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A discrete damaging beam model for quasi-brittle fracture
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Résumé — The aim of this work is to propose a new quasi-brittle fracture modeling based on an energy
driving. In such a way, a cohesive zone model is defined here. Moreover, by reason of this ability of
discontinuities simulation, the Discrete Element Method (DEM) is emphasized. An enrichment of the
elastic Euler-Bernoulli beam links is realized to provide a damageable behaviour. Consequently, the
necessity of a mixed mode law appears from the various bond orientations and this numerical method
leads us to develop a modified cohesive zone model defined from displacements displayed by the links.
To face this problem, our choice is, on the first hand, to consider tensile contribution, similarly to the
conventional mode I, and on the other hand to take into account the contributions from all other loading
i.e. bending, shear and torsion deformations. In order to confront our model with experimental results
on quasi-brittle material, particular interest was focused on a cyclic tensile-compression test on a double
notched concrete specimen. Such a test highlights the ability of the model to display the unilateral effect
as well as the residual stresses during crack re-closing.
Mots clés — Méthodes aux éléments discrets, Endommagement, Critère énergétique, Rupture quasi-
fragile.

1 Introduction

In recent years, the discrete element method has demonstrated its ability to model failure phenomena
[1],[2], [3], [4]. Indeed, its discrete character appears to be a real advantage in the creation of discon-
tinuities. Moreover, unlike continuous methods, this method offers the possibility of dealing with the
problems of crack reclosure as well as dynamic fractures [5], [6], [7]. However, as the discrete element
method is based on a lattice representation of continuous materials, continuous behaviour laws are not
applicable. Indeed, the mechanical behaviour is determined via the use of a kinematic and a rheology
inside a bond , like for example the elastic beam theory [1]. The failure criteria currently used remain
basic. The work presented here proposes a combination of the advantages of discrete and continuous
methods. To this end, a failure criterion developed for the discrete element method and inspired by the
cohesive zone models used in finite elements [8], [9], [10] is elaborated. The damage beam model is
implemented in the discrete element workbench GranOO [11].
In a first step, this damaging beam model is detailed. The reader could have more details and validation
results in [12]. In the second part of the paper, the model is used to simulate a cyclic Tensile Compression
test on a double notched concrete specimen. A comparison of these results with experimental tests [13]
is carried out. The influence of initial internal stresses in the lattice is also studied.

2 Damaging Beam Model

First of all, the principle of discrete element method is to discretize a continuous media with particles.
These discrete elements can have various shapes. The particles are connected by links which can be either
springs or beams. The choice is made here to consider Voronoi elements linked by beams. An example
of discretization is given in figure 1.
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FIGURE 1 – A discretization with Voronoï discrete elements linked by beams (in orange).

Here, the mechanical behaviour of cohesive media is generated by the deformations of the lattice
beams. In each of the links, the Euler-Bernouilli beam theory is applied. Thus, for each beam, three
forces, one normal and two tangential forces are calculated. Likewise, three moments, one torsion and
two bending moments are determined. These forces and torques are applied on each discrete element
attached to the beam. The criterion inspired by the cohesive zone model proposed in this paper is an
improvement of this Euler-Bernouilli beam. Indeed, in each beam, a damage variable D is defined. This
variable allows to deteriorate the initial Young modulus of the beam noted E0

beam, and consequently to
decrease the forces and moments, thanks to the equation (1) :

Ebeam = (1−D)E0
beam. (1)

The evolution of the damage variable D is described by an exponential law similar to the mixed mode
cohesive zone model (2). Thus the damage is determined from only 3 mixed parameters (the mixity will
be pointed on the all the parameters with a .̃) : a stiffness K̃, a cohesive energy G̃ and a maximum elastic
displacement δ̃e. As for the classical cohesive zone models, these mixed mode parameters are deduced
from the parameters of the pure fracture mode (noted I, II and III), i.e. stiffness, cohesive energy and
maximum elastic displacement respectively for each pure mode : KI, G f ,I, δe,I, KII, G f ,II, δe,II, KIII, G f ,III,
δe,III. Finally, the current displacement in the mixed mode δ̃ and its pure mode contributions δI, δII, and
δIII are defined.

D = 1− δ̃e

δ̃

exp

 2K̃

2
G̃

δ̃e
− K̃δ̃e

(δ̃e − δ̃ )

 (2)

The activation of the damage evolution is governed by a mixed initiation criterion expressed as :

∑
k=I,II,III

(
δk

δe,k

)2

= 1, (3)

So far, the law presented above is a classical cohesive zone model already used in finite element
methods. To implement it in a discrete paradigm, it remains to combine the beam theory aspect with
the cohesive zone aspect. For this purpose, an analysis of the kinematics of the beams as well as an
equivalence with the classical modes of failure are performed. This equivalence for each of the failure
modes is illustrated in the table 1. Also, a choice is made to correspond each kinematic of the beam with
a pure mode failure.
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TABLE 1 – Equivalence between classical failure modes and Euler-Bernouilli beam kinematics.

Representation of classical failure modes Corresponding beam kinematics

Adapting the cohesive zone model to beam theory is not trivial. In particular, mode II failure can be in-
duced by shear loads but also by bending loads using a beam. Moreover, as the links are Euler-Bernouilli
beams, a coupling between shear and bending is present making the definition of a pure mode II failure
complex. Consequently, several assumptions have been made. Firstly, by studying the deformation ener-
gies of the beams during a simulation, it can be shown that most of the internal energy is due to tensile
effects [1]. The torsion and bending contribution are lower. Therefore, in order to simplify the model,
the choice of a mixed mode with two pseudo pure modes is adopted. The first pseudo mode of failure
corresponds to the tensile effects. The second pseudo mode is assigning all other contributions : shear,
bending and torsion. In this way, the pseudo mode I failure (mode I*) results from a simple difference in
the length of the beam which is the first order elongation of the beam. The mode I* parameters thar are
propsoed in this model can then be written as :

δI∗ = L−L0

KI∗ =
E0

L0

δe,I∗ = εe,IL0

G f ,I∗ =
Abeam

Avorono
G f ,I

(4)

where L0 and L are the initial and the current beam lengths and E0 is the initial Young modulus of the
beam. Note that in this definition, the energy G f ,I is known as the fracture energy obtained from an
experimental tensile test. However, due to the presence of voids within the lattice, the fracture surface
associated with the fracture of a beam is not the cross section of the beam Abeam but the surface of the
discrete Voronoi elements noted Avorono. Thus, in order to take into account the lattice aspect of the
domain, G f ,I∗ is calculated from G f ,I using the last relation in (4).

The definition of Mode II* appears to be less obvious. Mode II* displacement can be split into displa-
cement due to torsional effects and displacement due to shear and bending effects. The torsional displa-
cement is then expressed as a function of the torsion angle θtorsion applied to the beam. Since measuring
the shear and bending effects through a single displacement seems complex, the choice to introduce the
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curvilinear length of the beam Lcurve is taken. Indeed, both shear and bending effects are responsible for
an elongation of the beam. Thus, a displacement defined as the difference between the curvilinear length
and the length of the beam due to tensile loading can be used to monitor the shear and bending effects.
Furthermore, to determine the stiffness of this pseudo mode II, a weighted average of the torsional, shear
and bending stiffnesses is proposed. In addition, it should be noted that since mode II* has no physical
significance, the choice of defining the maximum elastic displacement δe,II∗ and the fracture energy G f ,II∗

in proportion to the mode I* parameters is preferred. Thus, the introduction of a α parameter limits the
number of parameters to be calibrated. The use of this model is then only based on input material data
measured during mode I fracture tests. The calibration of a single parameter,α , through a fracture test
involving mode II* fracture mechanisms like compression (see [12]), is necessary.

The equations governing mode II∗ are detailed in (5) :

δII∗ = Lcurve −L+Rbeamθtorsion

KII∗ = fshearKshear + fbendingKbending + ftorsionKtorsion

δe,II∗ = αδe,I∗

G f ,II∗ = αG f ,I∗

(5)

where



fshear =
Fy+Fz

Fy+Fz+
Ty
L + Tz

L

δII
δII∗

fbending =
Ty
L + Tz

L

Fy+Fz+
Ty
L + Tz

L

δII
δII∗

ftorsion = δIII
δII∗

(6)

The pure modes I* and II* are defined. The parameters of the final mixed cohesive zone model can be
therefore explained. The displacements, stiffness and cohesive energy of the mixed model are presented
in the equation (7). The mixed mode parameters depend on the pure modes but also on the β variable
quantifying the mixed rate and defined as the ratio of the mode II* to the mode I* displacements. At each
iteration, the value of β is updated as well as those of the mixed law parameters.

δ̃ = δI∗δII∗

√
1+β 2

δ 2
II∗ +β 2δ 2

I∗

K̃ =

√
K2

I∗ +β 2K2
II∗

1+β 2

δ̃e = δe,I∗δe,II∗

√
1+β 2

δe,II∗
2 +β 2δe,I∗

2

G̃ f =
δ e

II∗
2

δ e
II∗

2 +β 2δ e
I∗

2 G f ,I∗ +
β 2δ e

I∗
2

δ e
II∗

2 +β 2δ e
I∗

2 G f ,II∗

(7)

with

β =
δII∗

δI∗
(8)

3 Closure Model

In order to be able to simulate complex loadings such as cyclic tensile compressive tests, the damaging
beam model must be combined with a reclosure model. Indeed, when a quasi-brittle material damaged
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in tension is subjected to a loading in compression, the micro-cracks within the material will close. In
our model, the presence of these micro-cracks is introduced by the damage of the beams degrading the
Young modulus. These crack reclosure mechanisms are illustrated on a macroscopic scale by a behaviour
in compression similar to the behaviour of a non-damaged material. Thus, in the stress-strain response
of the material, in compression, the slope corresponds to the initial Young modulus E0 and not to the
degraded Young modulus resulting from the tensile stage. To model this phenomenon, the addition of
closure force and moment is proposed here. The closure forces and moments are determined so that the
sum of the contributions due to the reclosure and the damaged beam is identical to that of the initial intact
beam. The relation (9) is then ensured :{

~F
~M

}
=

{
~FDamagebeam
~MDamagebeam

}
+

{
~Fclosure
~Mclosure

}
(9)

In addition, micro-crack reclosure occurs within the entire representative elementary volume (REV)
modelled by the reclosed beam. It is therefore necessary to take into account the part of the REV repre-
sented by voids. Thus, during the reclosure of two discrete elements, the forces Fclosure are transmitted
along a surface that does not correspond to the surface of the beam but to the Voronoi surface common
to both elements. The stiffness of the reclosure force Fclosure can be expressed as (10).

Kclosure = D
E0Avorono

L0
(10)

The prediction of the unilateral effect occurring during cyclic tests is expected by adding these forces
and moments of reclosure. However, irreversible mechanisms such as inelastic deformations occurring
during successive tension-compression cycles cannot be reproduced by this reclosure model. In order
to observe these inelastic deformations, the choice is made to add internal constraints initially in the
lattice. Thus, when the beams fail, the internal stresses are released and additional energy is dissipated.
The internal stresses are obtained during the creation of the specimen. Indeed, during the elaboration of
a specimen, the discrete elements are added one by one until a coordination number of 6.2 is obtained,
corresponding to a random close packing. The requirement of such a coordination number implies an
initial interpenetration of the discrete elements with their neighbors. Classically, a relaxation phase of
the specimen allows to make these interpenetrations disappear. In order to obtain internal stresses, the re-
laxation phase is interrupted during the process when a certain average interpenetration in the specimen,
here approximately 0.015%, is reached.

4 Results

In order to test our model, it is confronted with multiple qualitative and experimental results in [12].
Here, the focus is on a cyclic tension-compression test on a double notched concrete specimen. The
geometry and dimensions of the specimen used in the test in [13] are shown in the figure 2. It should be
noted that an experimental cyclic test on such a specimen required a servo-controlled loading in order to
have full control over the driving in the post-peak phase. Similarly, to numerically avoid the same failure
instabilities during the post-peak phase, the choice was made to reduce the height of the specimen, thus
reducing the energy in the system. As the failure mechanisms take place in the area close to the notches,
this assumption has no influence on the failure behaviour of the specimen. The numerical specimen and
its dimensions are presented in the figure 3.
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FIGURE 2 – Scheme of the specimen
used in the cyclic test [13].

FIGURE 3 – Numerical specimen used in the
cyclic test simulation (dimensions are in mm).

In addition, the specimen is composed of 5,000 Voronoi discrete elements, ensuring adequate elastic
behaviour. The elastic properties obtained after calibration (i.e. Young modulus Eµ , poisson ratio νµ and
the radius ratio rµ of the beam) and the parameters of the damage model used to simulate the test are
listed in the tables 2 and 3 respectively.

TABLE 2 – Material properties .M and lattice
properties .µ obtained from the elastic calibra-
tion.

Material Properties Lattice Properties
EM = 37.9 GPa Eµ = 182.29 GPa
νM = 0.2 νµ = 0.3

rµ = 0.6

TABLE 3 – Input parameters of the damaging
beam model.

Damage Parameters
G f ,I 101 J.m−2

εe,I 7.18.10−5

α 8

The stress-strain response obtained with the damaging beam model for a cyclic tensile test on a
specimen with no internal stresses is presented in the figure 4. A sensitivity study was performed on the
internal stresses in order to calibrate the inelastic deformation obtained numerically to the experimental
value extracted from [13]. The average internal stress selected has approximately a value of 64 kPa. The
stress-strain response obtained for a cyclic Tensile-Compression test with the damaging beam model and
internal stresses is compared to the result without internal stresses in the figure 4.
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FIGURE 4 – Stress-Strain response obtained from DBM
for a cyclic tensile test on a double notched specimen.

6



First, the onset of the damage phase appears for the same strain εe,I experimentally and with the
model. The softening envelope obtained with the model is similar to the experimental results. In addi-
tion, the unilateral effect is observed. In the compression stage after tensile damage, the slope exhibited
corresponds to the initial stiffness of the specimen.
Therefore, the influence of the initial internal stresses is noticeable in the inelastic deformations displayed
during the compression stage. Indeed, the model without internal stresses is not able to reproduce inelas-
tic deformations. The presence of stresses also has an impact on the stiffness of the damaged material.
Indeed, the slopes displayed during successive discharges are predicted more accurately with internal
stresses. During the first two unloadings in the simulation, the inelastic deformations agree with those
observed experimentally. However, when a larger number of cycles is reached, the inelastic deformations
displayed are insufficient. This observation is confirmed by the evolution of the inelastic deformation
with the damage illustrated in the figure 5.

Indeed, when the damage variable is less than 0.6, the simulation with internal stresses exhibits
the same inelastic deformation as experimentally. For the first four cycles, the simulation with internal
stresses is faithful to the experimental results. Similarly, for the first few cycles, the evolution of the
damage as a function of the proportion of fracture energy G f ,i used in the cycle number i compared to
the total fracture energy G f ,tot is identical for the simulation with internal stresses and the experimental
results as shown in the figure 5. However, when the specimen is more severely damaged, experimentally
a significant increase of the inelastic deformation is observed contrary to the numerical simulation. Note
also that when the specimen is highly damaged, the energy dissipated experimentally is larger than
numerically. The internal stresses therefore seem to influence only the first few cycles of the test. Once
these stresses are released, numerically, there is no additional energy dissipated. These results highlight
the combination of these internal stresses with another predominant dissipative mechanism when the
material is highly damaged. This dissipative mechanism can be attributed to frictional effects taking place
between the crack lips. Indeed, in such a case, the cracking zones are larger and the friction effects are
exacerbated. Thus, our DBM model could be improved in future works by taking into account frictional
effects.
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FIGURE 5 – Evolution of the damage as a function of the ratio of energy dissipated in cycle i and of the
total energy dissipated (left) and the inelastic deformation regarding the damage evolution (right.

5 Conclusion

A damage model inspired by cohesive zone models applied to the discrete element method has been
presented here. This study highlights the fact that damaging behaviour within a lattice leads to damaging
behaviour macroscopically. Furthermore, the ability of the model to display this behaviour even for spe-
cimens composed of few elements (i.e. 5000) has been shown. In addition, the mechanisms acting during
crack reclosure such as the unilateral effect are reproduced by the model. Finally, the inelastic deforma-
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tions resulting from the cycling of the loading can be modelled by adding internal stresses initially in the
lattice. However, this last point could be improved by taking into account the frictional effects occurring
within the material.
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