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Résumé — The role of clustered defects on the fatigue performance of IN100 is discussed in this paper. 

Samples were experimentally tested and also numerically simulated. The numerical samples were 

modelled via imaged-based finite element modelling techniques through X-ray Computed Tomography. 

The characteristics of the defects are exploited via the tomographic scans. Furthermore, the possibilities 

of developing synthetic microstructure with the aid of spatial pattern analysis and deep neural networks 

are explained in this article.  

Mots clefs — Ni-based superalloys, HCF, XCT, Spatial pattern analysis, GAN, Image-based FE model. 

1. Introduction 

The material Inconel 100 belongs to the Nickel based superalloy family and has its major use in the 

aviation industry, particularly for turbine discs or blade. However, many defects can be introduced 

during the casting of the material such as, shrinkages, pores, micro-voids, oxide films etc. These defects 

are known to degrade the High Cycle Fatigue (HCF) performance of the material. The pores are usually 

spherical in shape and are formed due to trapped gases or air bubbles while shrinkage driven cavities 

are caused due to the contraction of molten metal during freezing.  

With the aid of non-destructive methods, it is possible to develop an image based finite element(FE) 

model that includes the real defects using X-ray Computed Tomography (X-ray CT). This method has 

shown excellent performance in the past [1]. But, developing and calibrating a model to describe the 

HCF performance remains a challenging task. However, many models have been developed to take into 

account as many conditions as possible. The LEFM theory works well on long cracks although fails to 

apply on short cracks. For long-cracks, the crack propagation threshold can be used to estimate the 

fatigue limit and has been used by several authors. However, LEFM assumes that the fatigue failure is 

due to one large defect. 

A more simpler model is the Taylor’s model. The model states that the fatigue life of a material 

reduces as much as the stress concentration factor (SCF) from it’s nominal value in the presence of 

macrostructural defects or stress concentrating features like notches [2]. The model has been used on 

other materials and has shown great results. Therefore, this work uses this model to predict the fatigue 

life of IN100 specimens. Furthermore, IN100 is known to exhibit viscoplastic behavior at high 

temperatures and therefore, numerical models are simulated under elasto-viscoplastic behavior law. The 

results from this strategy is compared with experimental results.  

The mechanics of clustered defects is not straightforward as multiple parameters influence the 

initiation of crack and fatigue performance. However, the sensitivity of these parameters could be 

exploited in a probabilistic fashion by means of machine learning algorithms. Machine learning 

algorithms requires a large dataset for a robust training and therefore, in the context of fatigue testing 

with XCT inspection where the number of samples are limited, the use of synthetic samples that mimic 

the original samples is interesting. Via spatial pattern analysis, it is possible to distribute the defect 

volumes randomly within the samples such that it matches the randomness of the original samples [3, 

4]. On the other hand, there exists a type of deep neural networks called generative adversarial network 

(GANs) which can learn the filters describing particular objects to generate a new, random object that 
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resembles the real objects. With the combination of these two strategies, synthetic samples of IN100 can 

be developed to finally create a large database. 

2. Methods and procedures 

2.1. Material and Experimental setup 

Due to the high Ti/Al content (>11%), the two major phases present in IN100 are ordered γ’ (Ni3Al–

type) phase embedded in a face–centered cubic (FCC) solid–solution γ–Ni matrix, See Table 1. Carbides 

and borides appear as minor phases. Material properties of IN100 depend on a number of interrelated 

microstructural parameters including the volume fraction of γ’ to γ, grain size, elemental distribution, 

and precipitation of carbides and borides. 

Table 1. Composition of Inconel 100 

 

IN100 is a material mostly used as the turbine disk or blade in the aircraft engines. For the current 

work, four specimens are machined from casted bars. The grains are equiaxed with a size of 1.2mm and 

the only factor delimiting the fatigue life are the defect cavities. The specimens were 40 mm long with 

a gauge section diameter of 3.7 mm. To test the material under High Cycle Fatigue (HCF) regime, 

sinusoidal cyclic loads with a load ratio R=0 and a frequency of 80 Hz were applied until a maximum 

of 2x106 cycles at a temperature of 750˚C. The specimens were tested using a MTS servo hydraulic 

machine. Apart from the four samples, samples with no macroscopic defects were prepared and tested 

under the same conditions to define the Wöhler curve for a healthy sample. The fatigue life of all the 

other four test samples are computed with respect to the healthy sample by fatigue reduction factor and 

is called as Debit in this article. Debit can be defined as the amplifying factor of stress by the presence 

of defects, which conversely diminishes the fatigue limit and is given by, 

(1) 

𝐷𝑒𝑏𝑖𝑡 =  
𝜎𝑎𝑙𝑡,ℎ𝑒𝑎𝑙𝑡ℎ𝑦| @ 𝑁 𝑐𝑦𝑐𝑙𝑒𝑠

𝜎𝑎𝑙𝑡,𝑠𝑎𝑚𝑝𝑙𝑒| @ 𝑁 𝑐𝑦𝑐𝑙𝑒𝑠
 

Where 𝜎𝑎𝑙𝑡,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 is the fatigue life of healthy samples at N cycles and 𝜎𝑎𝑙𝑡,𝑠𝑎𝑚𝑝𝑙𝑒 is the 

fatigue life of test samples. 

2.2. X-ray CT and Numerical methods 

The test samples were characterized by XCT Nikon XT H 450 set up for a voxel size of 25 µm3. The 

image slices thus obtained were rendered into a volume. The images were treated and segmented using 

ImageJ software. After the segmentation, the volumes of defects were labelled separately and the surface 

meshes were extracted. The surface meshes were then inserted into the test sample and were registered 

in their actual positions, see Figure 1. The volume meshes are generated using ANSA software. 

Cobalt Chromium Aluminium Titanium Nickel 

15% 10% 5.5% 4.5% Balanced 
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a) b) c) 

Figure 1. a) Test sample b) X-ray CT scan c) Image based FE model 

 

The developed image based FE models are simulated numerically for one half cycle (tensile part of 

the cycle at a load ratio R = 0) to compute the stress concentration factors (SCF) for ten largest defects 

of each test sample. In the current work, the failure criterion based on stress concentration is used and 

therefore it is important to consider the relaxation of stresses and also the evolution of local plasticity in 

highly stressed regions. So, an isotropic model with Kinematic hardening has been adopted to simulate 

the elasto-viscoplastic behavior of the material.  

The hotspots are the local maximum stress values in the numerical model. To account for stress 

gradients close to local singularities, volumetric stress homogenization over a sphere with it’s center on 

the hotspot is performed. The radius for the stress homogenization are chosen in the range between 100-

200µm such that they are in line with the theory of critical distances [5, 6].  

The Taylor model, a criterion based on SCF is used to determine the fatigue limit of the test samples. 

According to this criterion, the SCF of the critical defect reduces the fatigue limit of the test samples 

from the materials nominal fatigue limit [2]. The model assumes the material will fail when the averaged 

stress over a critical volume surrounding the hot spot exceeds the nominal fatigue limit. In this work, 

the fatigue limit of healthy sample 𝜎𝑎𝑙𝑡,ℎ𝑒𝑎𝑙𝑡ℎ𝑦, which is free of large defects and defect clusters would 

be the nominal fatigue limit. The critical defect of the sample is therefore the one with highest SCF after 

the Volumetric Stress Homogenization. And so, the criteria is given by 

2 

𝜎𝐷 =
𝜎𝐷,ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝐾𝑡,𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 

Where, σD is the fatigue limit of the test sample or fatigue life at N number of cycles since the debit 

factor is assumed to be constant. In this criterion, SCF of critical defect Kt,critical is the debit factor that 

diminishes fatigue limit of the sample. 

2.3. Generation of synthetic samples 

Due to the complex responses of the clustered defects, machine learning algorithms are good 

candidates to estimate the sensitivity of various parameters of clustered defects (cluster size, 

morphological aspects, defect characteristics). Therefore, a large database of samples needs to be 

generated. The samples containing defects can be generated by means of spatial pattern analysis and the 

random morphology of the defects can be generated by means of Generative Adversarial Networks 

(GANs). In the current work, only the zone of clustered defects will be generated synthetically to 
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investigate the sensitivity of parameters influencing the fatigue properties. 

2.3.1. Generative adversarial Network (GAN) 

GANs are generative models using deep-learning methods. They are capable to comprehend and 

generate a new pattern which are similar to those of the dataset. Typically, GANs consist of two blocks, 

a generator and a discriminator as seen in Figure 2 and accepts a random noise vector to generate a data. 

The process involves training the discriminator separately with real data and then training the generator 

from the discriminator loss. By using the dataset of defects from tomographic scans, defect volumes of 

random morphologies and sizes are generated by applying the competencies of GAN [7].   

 

Figure 2. General architecture of GANs 

2.3.2. Spatial Pattern Analysis  

Spatial pattern analysis are vastly used in the field of astronomy, geography etc. 
However, the defects can be placed in their random locations after studying the patterns 
of the real samples. These random points can be generated by a simple homogenous 
Poisson process and is given by,  

(3) 

𝑃{𝑁 = 𝑘} =  
Λ𝑘

𝑘!
𝑒−Λ 

Where Λ is the intensity or density of number of points in region ℝ3 and k is the expected 
number of events. In the context of spatial randomness, three possible patterns can exist: 1) 
Complete spatial randomness 2) Clustered 3) Regular [4].  

To analyze the patterns within the cluster, Ripley’s K-function and Ripley’s bivariate K-function 
were used. K-function is given by, 
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𝐾(𝑑) =
𝑉

𝑁
∑ ∑

𝐼(𝑟𝑖𝑗 < 𝑑)

𝑁

𝑁

𝑗≠𝑖

𝑁

𝑖=1

 

Where I = 1 if rij < d and zero otherwise. V is the volume of the region while N is the number of 
points. The method to compute K-function is as follows: 

i. Construct a circle around one arbitrary point ‘i’ of radius ‘d’.  
ii. Count the number of points that fall inside the circle.  

iii. Repeat the above steps for all points and sum the results.  
iv. Increase, the radius d and repeat the above process 

The K-function tells the expected number of points within a radius d from any arbitrary point. 
For a pattern that follows homogenous poisson process, the K-function reduces to volume of 
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sphere with radius ‘d’ in 3D. If the K-function is larger than that of poisson process, the pattern is 
said to be clustered or else dispersed.  

For this analysis, the centroids of the defect volumes were considered and the K-function was 
also iterated with respect to decreasing order of their size to estimate the size dependency in the 
cluster. The large defects did not show signs of clustering but upon considering the smaller 
defects, the curve deviates from the nominal poisson process and shows signs of clustering as seen 
in Figure 3. 

 

Figure 3. K-function for one of the samples with defects being considered in varying sizes 

Figure 3 shows that the smaller defects less than sizes of 0.4 - 0.5mm are clustered. To estimate if 

these smaller defects are clustered among themselves or are clustered with the remaining larger defects, 

a bi-variate K-function was used. Bi-variate k-function is similar to Ripley’s k-function but divides the 

data into two types and estimates the expected number of one type of points around the other type. 

Furthermore, it makes sense to consider the nearest distance between the surfaces of the defects rather 

than the centroidal distance to also include the shape factor in the analysis assuming that the shape 

shrinks to a point in an alternate plane.  

 

Figure 4. Bi-variate k-function with varying defect sizes for type 1 and the remainder as type 2 

Figure 4 shows the expected number of type 2 defects within a distance from type 1 defects. It can 



6 

be seen that, the curves remains almost the same until defects of size 0.6 mm are considered for the type 

1 but then drastically drops and therefore, the smaller defects (type 2 here) are found to be clustered 

with the larger defects (type 1). There exists a critical size above which the defects are randomly 

distributed while the defects below critical size are clustered with these large defects. This can be due 

to the resolution of X-ray CT where the parts of inter-dendritic shrinkages are broken or due to 

metallurgical process. Furthermore, a process similar to Voronoi tessellation and K-medoids algorithm 

was used to estimate the optimum number of clusters and the critical defect size which forms the center 

of these clusters. It was concluded that there are micro-clusters within the cluster volume of the samples 

as depicted in Figure 5a and therefore Neyman-Scott process was used to generate synthetic samples, as 

shown Figure 5.  

 

  

a) b) c) 

Figure 5 a) Illustration of micro-clustering within the defect clusters b) Synthetic sample c) Real sample 

3. Results and discussions 

The Wöhler curves for each sample is shown in Figure 6. To define the wohler curves, 50% life 

probability curves from the industrial database is used. The database is created over thousands of tests 

carried out over the years.  The stress amplitudes in the figure is normalized by the fatigue limit of 

healthy sample due to confidentiality reasons. A scanning electron microscopy analysis revealed the 

location of crack initiation and the defect that was responsible for the initiation, see Figure 7. 

 

Figure 6. Wöhler curves for healthy and test samples as defined by debit factor. The tested samples are 

represented with markers of same colour for its respective wöhler curve. 

The cracks were found to initiate from one of the largest shrinkages. In some samples, the cracks 
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were found to propagate along the crystallographic plane towards the nearest shrinkage cavity during 

the early stage of crack propagation.  

 

Figure 7. Crack initiation from the shrinkage cavity (image magnified on right) of sample B. The white arrow 

indicates the propagation of crack along the crystallographic plane. 

 

Table 2. Comparison of experimental (exp) and numerical (num) results for test samples: The location of failure 

and the debit factor. Defect in red contour indicates the critical defect. 

Sample A   Sample C  

 

 

 

Failure plane 

Z- position 

(mm) 

 

Debit 

 Failure plane 

Z- position 

(mm) 

 

Debit 

Exp Num  Exp Num 
Error 

(%) 
 Exp Num  Exp Num 

Error 

(%) 

± 0 ± 0.5  1.4 1.39 -0.3  ± 4 ± 3.79  1.35 1.52 12 

 

Figure shows the porosity variation along the loading direction of the sample and also the fracture 

locations of the four test samples. All the test samples were found to fail in the region of clustered 

defects. With the aid of tomographic scans, the characteristics of the defects can be exploited and it has 
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been found that, the defects can be categorized into three types: 1) Shrinkages 2) Broken shrinkages and 

3) pores. The broken shrinkages are part of the main inter-dendritic shrinkage but separated maybe due 

to the resolution of the tomographic scans or by metallurgical process and are typically closer to the 

large shrinkage with a broad range of aspect ratio and sphericity value between 0.3 and 0.6. The pores 

are usually spherical in shape while the shrinkages are torturous.  

Through the numerical simulations, the debit factors (experimental debit and critical SCF) were 

compared to find the best radius of volumetric stress homogenization. The debit factors obtained 

numerically were found to be greatly coherent with the experimental results. The cracks are assumed to 

be initiating from the hotspot of the critical defect as also explained in the theory of critical distances 

and the location of these hotspots are in agreement with the plane of failure of the test samples. A brief 

synthesis of these results are shown in Table 2.  

The mechanics of the clustered defects are found to be complex. Although, all the samples were 

found to be failing from a large shrinkage or a defect closer to surface, the presence of multiple large 

defect volumes in the cluster is found to deteriorate the fatigue life. Furthermore, in the presence of 

multiple large shrinkage of similar volumes and with similar distance from free surface, morphology 

seems to play a major role in the initiation of crack. 
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