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Abstract — We are interested in the modelling of coupled thermo-hydro-mechanical (THM) problems
that describe the behaviour of a soil in which a weakly compressible fluid evolves. It is used for the evalu-
ation of the THM impact of high-level activity radioactive waste exothermicity within a deep geological
disposal facility. We shall present the definition of a block preconditioner for the fully coupled THM
equations. Numerical results reflect the good performance of the proposed preconditioner that shows to
be weakly scalable until more than 2000 cores and more than 1 billion degrees of freedom.
Mots clés — Multiphysics, Preconditioning, Biot’s Problem, Finite Elements, HPC.

1 Introduction

1.1 Context

The detailed modeling of underground phenomena is of major interest in several industrial fields ranging
from oil and gas to nuclear waste storage and civil engineering. This is particularly the case for coupled
phenomena where several physics come into play and can make it difficult to understand their respective
influences.
The modeling of underground phenomena has been initiated by the pioneering work of Terzaghi in
his theory of one-dimensional consolidation [1]. The theory was then expanded by Biot, who used
the coupling of Darcy’s and Hooke’s laws together with the Terzaghi’s principle [2]. Then, he also
included the effect of temperature by using the new concept of "virtual dissipation" [3]. Finally Coussy
showed that a general theory of thermomechanics of saturated porous media could be established based
on standard thermodynamics principles [4].
Coupled thermo-hydo-mechanics (THM) is the topic of this communication, with special attention to
numerical implementation and scalable parallel solvers.

1.2 The THM equations

An isotropic incompressible saturated mono-phased porous media is considered ; it is modeled as a solid
skeleton containing fluid filled pores. The essential parameters of the medium are :

• the porosity, named φ in the sequel. It is the ratio between the volume of the void and the total
volume of the medium,

• the intrinsic permeability named Kint . It measures the material’s ability to transmit fluids, with λH ,
the hydraulic permeability, being a function of it,

• the thermal conductivity named λT . It measures the medium’s ability to conduct heat.

Other parameters worthwhile mentioning are :

• the Biot’s coefficient b but since the medium is incompressible it will translate into b = 1,

• the saturation named S, that describes the moisture content of the medium who will also be S = 1
because the medium is saturated.
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• the volumetric enthalpy of the water has been neglected in order to simplify the energy conserva-
tion equation. It is a strong simplification but it does not compromise the preconditioning strategy
in the general case.

These parameters, some of which appear explicitly therein, are of major importance in the balance equa-
tions. They are three in number since the medium is saturated and mono-phased : the mechanics equi-
librium equation, the water mass conservation and the energy conservation. After detailing each balance
equation in order to reveal the detailed coupling between the phenomena involved, the final system is
obtained.

Let Ω be a d dimensional domain, 1 ≤ d ≤ 3, and t f the final time of the simulation. The THM model
describes the evolution of 3 primal unknowns. The vector displacement field, u(x, t), the fluid pressure
field, p(x, t), the temperature field T (x, t).

The coupled system consists of , ∀x ∈ Ω and ∀t > 0:

−div(A : ε(u))+∇p+3Kαs∇T = f e in Ω× (0, t f )

−ρ f div(λH
∇p)+ρ f

(
div(u̇)+

φ

Kl
ṗ−αm3Ṫ

)
= ge in Ω× (0, t f )

−div(λT
∇T )+(3K0αs div(u̇)−3αm ṗ−9K0α

2
s Ṫ )T0 +C0

σṪ = Θ in Ω× (0, t f )

where f e denotes the total volume external forces, ge the total fluid sources and Θ the total sources of
heat. It is worth noticing the use of the Hooke’s, Darcy’s and Fourier’s laws in the above equations.
The boundary of Ω is denoted ∂Ω and 6 different partitions are needed to define the boundary conditions.
For each primal unknown, we may define Dirichlet and Neumann boundary conditions, say the displace-
ment u and the stress σ, the pressure p and the fluid flux ζ, the temperature T and the thermal flux Φ.
We thus have, respectively, the boundary conditions on the displacement unknowns, on the pressure
unknowns and on the temperature unknowns such as :

∂Ω = ∂Ω
u ∪∂Ω

σ with ∂Ω
u ∩∂Ω

σ = /0

∂Ω = ∂Ω
p ∪∂Ω

ζ with ∂Ω
p ∩∂Ω

ζ = /0

∂Ω = ∂Ω
T ∪∂Ω

Φ with ∂Ω
T ∩∂Ω

Φ = /0

The boundary conditions are given by :

σ(u) ·n = te on ∂Ω
σ × (0, t f )

−λ
H

∇p ·n = ζe on ∂Ω
ζ × (0, t f )

−λ
T

∇T ·n =Φe on ∂Ω
Φ× (0, t f )

u = ue on ∂Ω
u × (0, t f )

p = pe on ∂Ω
p × (0, t f )

T = T e on ∂Ω
T × (0, t f )

u(,0) = u0 in Ω

p(,0) = p0 in Ω

T (,0) = T0 in Ω

where n is the outward normal.
Furthermore, the material parameters’ definitions are given in Table 1.

We use the implicit Euler method for time discretization and the finite element method with Taylor-
Hood P2-P1-P1 elements for space discretization. This translates into using continuous piecewise quadrat-
ics to approximate the displacement and continuous piecewise linears to approximate the pressure and
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Table 1: Parameters

Symbol Definition Unit
A Forth order Hooke’s tensor Pa
ε Strain tensor -
E Young’s modulus Pa
ν Poisson’s ratio -
K Bulk modulus of the solid Pa
K0 "Drained" bulk modulus of the medium Pa
Kl Bulk modulus of the fluid Pa
φ Porosity -
µl Fluid dynamic viscosity Pa.s
Cs Specific heat of the solid J.kg−1.K−1

C f Specific heat of the fluid J.kg−1.K−1

C0
σ Homogenized specific heat of the medium -

ρs Solid density kg.m−3

ρ f Fluid density kg.m−3

ρm Medium density kg.m−3

λH Hydraulic conductivity Pa−1.m².s−1

λT Thermal conductivity W.m−1.K
T0 Temperature of reference K
αs Dilation coefficient of the solid K−1

αl Dilation coefficient of the fluid K−1

αm Homogenized dilation coefficient of the medium K−1

the temperature. In [5], these elements where studied for poroelasticity and having the polynomial in-
terpolation for the displacement be one degree higher than for the pressure, equilibrates the convergence
rate of all terms in the energy norm. Furthermore the convergence is robust with respect to the mesh size.

2 The preconditioner

When considering the preconditioning of coupled multi-physics problems, two approaches are high-
lighted in the literature:

• Block preconditioners with a multigrid preconditioning inside each block [6],

• Multigrid algorithm with block preconditioners as smoothers [7].

The former approach is the route that we took for convenience with respect to integration into code_aster.

All the solvers presented use a preconditioned FGMRES method [8] with the notation: FGMRES(A,P),
where A is the system to solve, and P the preconditioner. For P, a Block Gauss-Seidel preconditioner
was chosen. It is implemented in PETSc as follows:

P−1 =

Ã−1
uu 0 0
0 Id 0
0 0 Id

Id −Aup −AuT

0 Id 0
0 0 Id

Id 0 0
0 Ã−1

pp 0
0 0 Id

Id 0 0
0 Id −ApT

0 0 Id

Id 0 0
0 Id 0
0 0 Ã−1

T T


where Ã−1

∗∗ = FGMRES(A∗∗,Boomer) or Ã−1
∗∗ = MUMPS(A∗∗). Boomer refers to the algebraic multigrid

preconditioner BoomerAMG of the Hypre library and MUMPS to the MUltifrontal Massively Parallel
Solver [10][9].
The stopping criteria of FGMRES is the relative convergence tolerance that was set to 10−6. In addition,
when solving Ã−1

uu with FGMRES the maximum number of iteration was set to 10, for Ã−1
pp it was set to

20 and for Ã−1
T T to 11.
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3 Results

We now turn to the presentation of a test case with results using the block Gauss-Seidel preconditioner
where each diagonal block is solved using a FGMRES method preconditioned by Boomer. The method
is implemented in code_aster, the massively parallel open source general purpose finite element solver
developed at EDF R&D [12].

3.1 Test case in code_aster

The test case needs to be simple enough so that the mesh can be easily refined but complex enough to
resemble the industrial problem in consideration.

To do so, a bi-material example was chosen. It is a 3D rectangular box as seen in figure 1, with a 0.1
m length following x, a 0.1 m height following y and 0.05 m large following z. The tetrahedral mesh was
generated using Gmsh 4.4.1.

Figure 1: Bi-material test case

Table 2: The test case parameters
Medium Value

µl 10−3

Kl 2.109

Cs 1000
C f 4180
ρ f 1000
λT 1.6
T0 273
αs 10−5

αl 10−4

K0 K
λH Kint/µl
C0

σ Csρs(1−φ)+Clρ f φ

ρs (ρm −φρ f )/(1−φ)
αm φαl +(1−φ)αs

Clay Value
E 6.109

ν 0.3
ρm 2410
Kint 4.10−21

φ 0.18

Concrete Value
E 15.109

ν 0.2
ρm 2500
Kint 10−11

φ 0.2

In Figure 2, Zone 1 is made of clay and Zone 2 is made either of clay or of concrete. The value of the
parameters,displayed in Table 2, are realistic and represent the type industrial problems in consideration
[11]. The displacement was set to 0 on the bottom surface (y=0), a mechanical pressure was applied
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on the top surface (y=0.1) and an 80 °C temperature was set on the whole surface of the sample. The
tests were solved with code_aster using the THM framework presented in the section above, an isotropic
saturated mono-phased THM medium using P2-P1-P1 finite elements.

3.2 Parameter sensibility

One of the biggest issue when solving the THM system is the variety of parameters and the sometimes
huge difference in orders of magnitude. We start by measuring the impact of parameters that can have
different sets of values by changing the Young’s modulus, the intrinsic permeability and the thermal
conductivity. We have chosen to vary these parameters since each of them appears respectively in each
balance equation and since they have a major influence therein. The tests are done using the test case of
Figure 2 with Zone 1 and Zone 2 made of clay, using the medium and clay parameters from Table 2.

For each set of parameters and mesh fineness, we give the number of outer FGMRES iterations
followed by the condition number of the preconditioned system in parentheses. The results are compiled
in Table 3.

Table 3: Parameter robustness

Parameters Dof
E Intr. Perm. Therm. Cond. 10 000 60 000 1 500 000

1.0e+09

4.0e-15
4.0e-01 4 (56) 5 (65) 5 (74)
2.3e+00 4 (57) 4 (72) 5 (87)

4.0e-18
4.0e-01 5 (108) 6 (82) 6 (74)
2.3e+00 5 (116) 5 (93) 5 (88)

4.0e-21
4.0e-01 21 (53) 22 (100) 20 (408)
2.3e+00 18 (54) 20 (111) 17 (357)

2.5e+10

4.0e-15
4.0e-01 5 (12) 6 (6) 6 (3)
2.3e+00 5 (2) 5 (2) 5 (2)

4.0e-18
4.0e-01 5 (12) 6 (6) 6 (3)
2.3e+00 5 (2) 5 (2) 5 (2)

4.0e-21
4.0e-01 8 (16) 8 (12) 8 (4)
2.3e+00 7 (12) 7 (9) 7 (4)

5.0e+10

4.0e-15
4.0e-01 5 (18) 6 (8) 6 (2)
2.3e+00 5 (2) 5 (2) 5 (1)

4.0e-18
4.0e-01 5 (18) 6 (8) 6 (2)
2.3e+00 5 (2) 5 (2) 5 (1)

4.0e-21
4.0e-01 7 (13) 7 (8) 7 (3)
2.3e+00 6 (6) 6 (3) 6 (2)

It is worth mentioning the very large range of variation of mesh fineness and of each parameter (up to
6 orders of magnitude). When analysing Table 3, the first point to highlight is the excellent independence
to mesh size : in each line, the outer number of FGMRES iteration remains constant. Then, looking at
the results in column, we note a moderate variation of this number, that remains mostly under 10 except
for the "worst" set of parameters (low E and low Kint), where it only reaches 20. In this case nevertheless,
the number of internal FGMRES iterations remains as low as 10 for the displacement block and 6 for the
pressure and temperature blocks. We conclude that the proposed preconditioner behaves well on these
large ranges of variation, making the condition number of the preconditioned system vary from 2 to 400.

3.3 Weak scalability

The weak scalability of the preconditioner is evaluated on the previous test case. EDF’s cluster Cronos
was used to run the scalability tests. It has 2 Xeon Platinum 8260 24C 2.4GHz processors per node.
Each CPU is equipped with 24 cores .
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A weak scalability test consists in setting a fixed number of degree of freedom (Dof) by processor
and increasing the size of the problem by increasing the number of processes. In other words, we set
the size of a sub-domain and make the problem bigger by increasing the total number of sub-domains.
Our goal is to investigate if the solution algorithm needs the same resolution time whether we solve N
Dof on 1 process or 1000xN Dof on 1000 processes. In case of perfect weak scalability, the time should
remain constant when increasing the number of processes. Realistic parameters where chosen for the
weak scalability test. The bi-material case from Figure 2 was chosen for the weak scalability test, with
Zone 1 made of clay and Zone 2 made of concrete using the parameters values from Table 2.

Figure 2: Time ratio as a function of the number of processes

As can be seen in the Figure 2, the number of Dof per process was fixed to 50 000 (blue line), 200
000 (orange line) and 500 000 (green line) and the test case was run of 40 processes to 2500 processes.
The ratio between the solution time to the 40 processes time is presented.

For small numbers of Dof per process, it remains between 1. and 2.5 times the initial time, whereas
for 500 000, it remains between 1. and 1.7. We highlight that the size of the linear system ranges from
20 million to more than 1 billion Dof. This sub-optimal behavior for small sub-domains is often due to
latency of the cluster’s network. When sub-domains are large and there is more work per process, the
computation dominates the cost associated with communication. This is a very good scalability result
since the test case is rather complex especially due to the variation of material parameters between clay
and concrete.

4 Conclusion

In this communication is presented the assessment of the robustness and the weak scalability of a pre-
conditioner dedicated to coupled THM problems. A simple yet representative test case has been set up,
on which the preconditioner shows excellent mesh size independence, good robustness with respect to
parameters variation and good weak scalability.

Though established in the linear regime, these results a very valuable when considering to move to
nonlinear constitutive laws. This point is being investigated and encouraging results have already been
obtained.
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