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Résumé — Technological innovations such as Continuous Filament Fabrication enrich the 

manufacturing possibilities for lightweight structures, essentially because they enable more complex 

geometries. However, design optimization is more challenging and requires the increasing use of 

numerical optimization methods. Continuous Filament Fabrication is a source of various uncertainties. 

Therefore, the high robustness of the mechanical behavior of optimized designs is desirable. Two 

approaches to obtain robust designs are presented. A stochastic method, the Certain Generalized 

Stresses Method, is used to study the robustness of structures. 

 

Mots clefs — Additive manufacturing, Truss structures, Uncertainties, CGSM. 

1. Introduction 

In recent years, additive manufacturing has impacted the design of lightweight structures [1]. With 

it, much more complex components can be manufactured than with traditional manufacturing 

processes [2,3]. For lightweight applications, the use of continuous composite materials is attractive 

due to their excellent material properties (stiffness, strength) [4,5]. The most used additive 

manufacturing technology for continuous composite materials is Continuous Filament Fabrication 

[6,7]. However, new challenges are imposed by the Continuous Filament Fabrication process [8]. On 

the one hand, numerical optimization tools become essential in the design process to benefit from the 

high geometrical freedom in fabrication [9,10]. On the other hand, various sources of uncertainty in 

material properties and manufacturing are associated with this process (e.g., in [11,12]). As a result, 

variability in material and physical parameters can be observed in manufactured parts, which can 

influence the static or dynamic structural response. Therefore, creating robust designs with a low 

sensitivity to variability of material and physical parameters is desirable. 

In this work, the Certain Generalized Stresses Method (CGSM) is used to study the influence of 

parameter variability on the robustness of the structure. The stochastic method is computationally 

efficient due to a reduced number of finite element analyses and can be used for a large number of 

uncertain parameters. For the implementation of the robustness evaluation in the design process, two 

approaches are proposed: first, the uncoupled approach, which is a two-step robust selection method, 

and second, the coupled approach in the form of robust optimization.  

This paper continues as follows: the two approaches to consider robustness evaluation in the design 

process are proposed in Section 2. Then, a description of the stochastic method CGSM, including the 

CGSM formulation for bar trusses and the implementation in the uncoupled approach follows in 

Section 3. The implementation is then demonstrated with a classical MBB (Messerschmitt-Bölkow-

Blohm) beam example in Section 4. Conclusions and future work are given in Section 5. 
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2. Robustness evaluation strategy in the design process 

A structure is robust if its static or dynamic structural response is not sensitive to variability in 

material and physical parameters. The variability in material or physical properties, load direction or 

magnitude, boundary conditions, and geometry means that these parameters are not deterministic. As a 

result, the quantities describing the structural behavior under load, such as displacement, are not 

deterministic either. Stochastic modeling can be used to study the influence of variability on the 

structural response. With a probabilistic approach, the stochastic model determines how likely a 

particular structural response is expected. 

2.1. An uncoupled approach 

The robustness of structures can be achieved in several ways. One approach is like the concept of 

generative design [13]. In generative design, different possible designs which meet overall design 

criteria (e.g., minimum weight or maximum stiffness) are created. In an iterative process, the designs 

are gradually improved through selection by either a human interaction or an algorithm. The 

uncoupled approach can be implemented in a two-step process where, first, optimized structures which 

meet the overall design criteria are created. Second, the robustness of these structures is evaluated, 

taking into account parameter variability. This procedure is an uncoupled approach, where an 

optimized and robust design is obtained in two steps using a selection method.  

There are some advantages to a selection method. The two different steps of optimization and 

robustness selection are independent from each other. Thus, a particular robustness selection method 

can be used in combination with any optimization algorithm. Moreover, if the optimization objective 

changes, for instance, from weight minimization to stiffness maximization, it does not influence the 

robustness selection method. However, there are also disadvantages to the uncoupled approach. The 

use of an iterative process to obtain optimized and robust designs may be time-consuming. 

Furthermore, the globally optimal and most robust design may not be found. 

2.2. A coupled approach 

Robust design optimization is a method to consider parameter variability within the optimization 

algorithm. There are multiple possibilities to consider the design robustness in an optimization 

formulation, for instance, as an optimization constraint or optimization objective. In the first case, the 

optimization objective remains unchanged to maximize the stiffness or minimize the weight of the 

structure. The design robustness is implemented as a constraint, limiting the accepted variability of 

structural performance, for instance, displacement variability. In the second case, a multi-objective 

optimization is targeted, where two different optimization objectives are considered [14]. This is, for 

instance, to minimize the nominal displacement and the displacement variability simultaneously.  

A method which considers robustness within the optimization step is a coupled approach. In 

contrast to the uncoupled approach, a globally optimal and robust solution is more likely to be found. 

However, in the coupled approach, the evaluation of robustness is dependent on the optimization 

algorithm. Depending on the optimization algorithm and the implementation of robustness in it, 

convergence can be affected. Furthermore, two optimization objectives may be contradictory in a 

multi-objective formulation. Such behavior can be studied with a weighted objective function and 

mapped in a Pareto front. Finally, the coupled approach is more difficult to develop than the 

uncoupled approach, but it is also more promising. 
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3. The Certain Generalized Stresses Method (CGSM) 

3.1. Principle 

The principle of the stochastic method CGSM is to build a metamodel based on a finite element 

model. The metamodel allows to define physical and material properties, which can be considered as 

uncertain parameters. The propagation of uncertainty is performed with a Monte Carlo simulation, 

where no further finite element analyses are needed. The CGSM assumes the independence of the 

generalized forces in the structure from the uncertain parameters. This assumption is exact for 

statically determinate structures so that, in this case, the method leads to exact calculations of the 

quantities of interest (e.g., displacement). However, the CGSM is also applicable to statically 

indeterminate structures, for which it leads to an approximation. As proposed by Yin et al. [15], an 

error indicator is useful to estimate the quality of the mean value or the standard deviation of the 

quantity of interest. For a low number of trials, the results obtained by the CGSM are compared to the 

results of a direct Monte Carlo simulation, using the same values for the uncertain parameters. 

3.2. CGSM formulation for bar trusses 

The CGSM is used to analyze thin-walled structures, bars and beam trusses, for which different 

formulations exist. The following formulation for bar trusses is based on Lardeur et al. [16]. The 

objective is to observe the variability of displacement   depending on the elasticity modulus   as an 

uncertain parameter. A given truss structure is modeled with   bar elements. Further assuming a 

constant axial force throughout an element, the global strain energy      for a truss with   elements is: 

     
 

 
 

  
   

    

 

   

 (1) 

where    is the axial force in the element   and further,    is the length,    the cross-sectional area and 

   the elasticity modulus of the element  . The Castigliano theorem states: 

  
      

  
 (2) 

from which the displacement   at a point   in the direction of interest can be obtained.   is a physical 

or fictive force in the direction of interest. To utilize equation (2), the axial force    is decomposed 

into: 

     
     

   
(3) 

where   
  is the axial force in element   due to all external forces except at point   in the direction of 

interest and   
  is the axial force in element   due to a unitary force applied at point   in the direction 

of interest. Based on the CGSM assumption, the axial forces   
  and   

   are independent from the 

uncertain parameters. Substituting equations (1) and (3) into equation (2) leads to the displacement: 

    
  

       
     

   

    

 

   

 (4) 

where   ,   
 ,   

  ,   and    are deterministic values and    is the uncertain parameter of element  . If 
the force   is fictive and not physically present,     is applied in equation (4).  
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The coefficient of variation c.o.v. is used to evaluate the variability of the displacement and is defined 

as: 

          
    

    
 (5) 

where      is the mean value and      is the standard deviation of the displacement. 

3.3. Implementation of the CGSM in the uncoupled approach 

Regardless of the choice of optimization algorithm, the robustness of the design is evaluated in a 

post-design process. First, it is necessary to obtain different optimized designs by creating variations in 

the optimization algorithm. Figure 1 shows the CGSM flowchart, which is to be applied to each of the 

optimized designs. After two finite element analyses (FEA) with nominal parameters, the generalized 

forces are calculated, and the quantity of interest is obtained using the Castigliano theorem. As a result 

of the CGSM assumption, the internal strain energy of the truss can be calculated for any number of 

uncertain parameters using a Monte Carlo Simulation without further FEA. Finally, the mean value, 

standard deviation and c.o.v. of the quantity of interest are calculated. If the quantity of interest is the 

displacement, equations (4) and (5) are used. 

 

Figure 1 – Flowchart of the Certain Generalized Stresses Method (CGSM). 

4. Example with the uncoupled approach 

The example of the well-known MBB beam, shown in Figure 2, is studied using the uncoupled 

approach. The objective is to evaluate the influence of the uncertain elasticity modulus on the 

variability of the displacement at a point of interest  . Thus, the lower the observed variability of 

displacement, the more robust the structure. The uncoupled approach is a two-step process: first, 

various truss designs are obtained with an optimization algorithm, then second, the robustness of these 

structures is studied using the CGSM method. 

 

Figure 2 – Design domain load and boundary conditions of MBB beam. 
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For the optimization step, a ground structure-based layout optimization is used. The design domain 

is discretized with a regular grid of nodes. A fully connected ground structure is the configuration 

where each node is connected to all other nodes by discrete elements. These elements form the set of 

potential members, out of which the optimization algorithm identifies an optimal subset. The objective 

function minimizes the volume   of the structure: 

        

 

   

   (6) 

where   is the length and   the cross-sectional area of the member    and the cross-sectional areas are 

the optimization variables. Due to the discretization, the optimization result depends on the resolution 

of the grid of nodes. 

Figure 3 shows six optimized truss structures for the minimum weight optimization of the MBB 

beam problem. The colors of the members correspond to the sign of axial force in the member. 

Members in red are under tension, while members in blue are under compression. All designs were 

obtained with the optimization tool LayOpt developed by Fairclough et al. [17]. Besides the primary 

ground structure-based layout optimization step, the tool allows subsequent geometry optimization and 

Heaviside simplification. For the optimization, a maximum compression to tension stress ratio of 1:2 

was assumed, which roughly corresponds to the mechanical properties of a continuous carbon fiber 

composite. For a domain size of 24 x 4, designs with a volume between 43.41 and 44.44 were 

obtained. The difference between the lowest and highest volume is thus less than 2.4%. Simplifying, 

one can assume that all designs are “equally” optimum for the optimization objective defined in 

equation (6). However, it is noticeable that the number of members varies significantly between the 

designs and ranges from 23 to 249 members. 

 

Figure 3 – “Equally” optimum truss designs of the MBB beam (the line thickness is proportional to the cross-

sectional area). 

The robustness evaluation step was conducted for each design using the CGSM. The displacement 

at the point of interest   was obtained following the described implementation (see section 3.3.). In the 

MBB beam example, the only external load is at the point of interest   in the direction of interest. 

Consequently, the force   in equations (2)-(4) is a physical force, but the axial force    vanishes. Only 

one finite element analysis was needed to obtain the displacements for any configuration of uncertain 

parameters. This is an exceptional case as usually two finite element analyses are required for the 

CGSM. 
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The elasticity modulus of each member was defined as an uncertain parameter of the CGSM. 

Assuming a fully independent case of the uncertain parameters, the number of uncertain parameters 

was equal to the number of members in each design. The CGSM allows any statistical distribution of 

uncertain parameters. In the example, a truncated Gaussian distribution was used to define the 

statistical distribution of the elasticity modulus. The CGSM allows the calculation of the displacement 

variability for low to very high levels of variability of the elasticity modulus. In the MBB beam 

example, various levels of variability were considered with a c.o.v. from 5% to 30%. A c.o.v. of 30% 

represents an extremely high variability ranging from 10% to 190% of the nominal value. Standard 

software programs were used to perform the finite element analyses (Abaqus) and evaluate the 

displacement variability with the CGSM metamodel (Matlab). The quality of the CGSM was 

estimated using an error indicator (see section 3.1.). For ten trials and a c.o.v.    of 10%, errors of 

less than 0.3% were obtained for the mean value and standard deviation of the displacement. The low 

error indicator values show a high quality of the CGSM for the MBB beam example. 

Almost identical mean values of displacement      at all variability levels were obtained for all 

six designs. However, the standard deviation differed clearly between the designs. Figure 4 shows the 

obtained variability of the displacement   for different levels of variability of the elasticity modulus 

 . A variability of displacement ranging from 1.3% to 2.8% was obtained for a c.o.v.    of 10%. For 

an extremely high level of variability or a c.o.v.    of 30%, the obtained variability of displacement 

ranged from 6.0% to 12.7%. The displacement variability thus differed by more than a factor of two 

between the “equally” optimum designs. Furthermore, a correlation between the number of members 

and the level of variability of the displacement was observed. A structure with more members is more 

robust to variability of the elasticity modulus than a structure with fewer members. This observation 

can be attributed to a compensation phenomenon that often occurs when the number of uncertain 

parameters increases. The design with the lowest displacement variability had 249 uncertain 

parameters, more than ten times than the design with the highest displacement variability. 

 

Figure 4 – Comparison of MBB beams: variability of maximum displacement   for several levels of variability 

of elasticity modulus  . 
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5. Conclusion and perspective 

In this work, the evaluation of the robustness of optimized lightweight structures was discussed. 

Two different approaches were presented, namely, an uncoupled and a coupled approach.  The 

uncoupled approach is a two-step method, where a robust design is selected from a set of optimized 

structures using stochastic modeling. This approach was developed independently from the 

optimization step. Using the well-known MBB beam optimization problem, it was demonstrated that 

lightweight optimization does not necessarily lead to robust structures. For manufacturing processes, 

such as Fused Filament Fabrication, where various sources for variability exist due to material and 

manufacturing, it is beneficial to consider robustness in the design process. The coupled approach may 

allow to obtain even more optimal robust designs than the uncoupled approach. In contrast to the two-

step method, the design robustness is already considered during the design optimization step. 

However, the coupled approach leads to other challenges and requires the development of new and 

specific optimization techniques. Current research is addressing this coupled approach. 
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