
CSMA 2022 

15ème Colloque National en Calcul des Structures 

16-20 mai 2022, Presqu’île de Giens (Var) 

 
 

  

 1 

Fatigue Damage Estimation from Random Vibration Testing: 

Application to a notched specimen 

L. Campello1,2, R. Serra1, R. Sesana2, C. Delprete2 
 
1 INSA Centre Val de Loire, Laboratoire de Mécanique Gabriel Lamé, France, {luca.campello@insa-cvl.fr; roger.serra@insa-cvl.fr  
2Politecnico di Torino, DIMEAS, , Italy, luca.campello@studenti.polito.it; raffaella.sesana@polito.it; cristiana.delprete@polito.it  

Résumé — Vibrations are random in a wide range of applications and they are the main cause of 

mechanical failure. To prevent such failure, it is necessary to evaluate the fatigue life using test or 

analysis techniques. For computing the severity of the damage many methods are available in literature, 

but the estimation damage is just an approximation.  The objective of this study is to propose a numerical 

model, together with experimental validation, in order to estimate fatigue damage caused by random 

vibrations in metallic materials undergoing uniaxial fatigue testing. 

Mots clefs — Random vibrations test, Fatigue Damage, Virtual test; frequency-domain counting 

method. 

1. Introduction 

Many mechanical components are subjected to vibrations generating in the material a stress history, 

related to vibration amplitude and frequency. Vibration can lead to fatigue failure, as a result of 

accumulated damage [12]. An adequate design of components and systems allows to estimate the 

damage of the components subject to vibrations and to predict its life [12,18]. Most of the vibrations are 

non-deterministic vibrations, so called, random vibrations [7]. They are non-deterministic excitations, 

a type of oscillation whose behaviour is non-predictable and non-repeatable, which make the design of 

the component harder [1]. Many methods of predicting the vibration response of mechanical and 

structural systems to random vibrations are presented in technical literature [14, 18]. The fatigue damage 

assessment can be approached both in time and in frequency domain [14,3]. In time domain, Rainflow 

Cycle Counting and linear damage rule are used; in the frequency domain several methods are available 

[14]. The approach in frequency domain carries a significant benefit in terms of calculation time and a 

more efficient assessment of random process [14]. In frequency domain the load is described by Power 

Spectral Density (PSD) function, which represents the distribution of power into frequency components 

composing the time-signal [1]. However, the damage estimation results are approximated, and, for a 

reliable estimation of damage, large and expensive testing campaigns are required. Damage and life 

simulation models are a helpful tool nowadays. The purpose of this work is to implement and validate 

a Finite Element Method (FEM)-model whose goal is to predict with a reliable accuracy the fatigue 

damage and the residual useful life of a AISI 304 specimen loaded with a random vibration. 

2. Theoretical background 

2.1. Random vibration 

Zero mean, static Gaussian Random vibrations X(t) are generally described in the frequency domain 

by means of Power Spectral Density (PSD) functions S()[7]. Generally, instead of using the PSD, it is 

customary to use the one-side spectral density Gxx. A random signal is characterized by a set of spectral 

moment [1]. 
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which represent important properties like variance and its derivative 
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Others important parameters are expecting positive zero crossing rate and expecting peak, defined 

respectively  
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The spectral density could be described also by an irregularity factor or bandwidth parameters 
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The most used are [3] 
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If 1 tends to 0 the vibration is called a wideband vibration where the PSD has significant value in a 

wide frequency range, instead if 1 tends to 1, the process is called a narrowband vibration where PSD 

has significant value only in short band centered around a frequency value [12, 1]. 

The probability distribution of the peaks value of the random signal is well described by Rice 

distribution [1,18]. In the case of a narrow band vibration, the probability distribution is described by 

the Rayleigh distribution [1]. 

2.2. Structural Dynamic and Modal Analysis 

The aim of the dynamic analysis of flexible structures is to characterise the response of the structures 

excited by dynamic loads. A flexible structure can be described as a multi-degree of freedom (MDOF) 

[5]: 

 [𝑀]{𝑥
··
} + [𝐶]{𝑥

·
} + [𝐾]{𝑥} = {𝑓(𝑡)} (8) 

where [M] is the mass matrix, [C] is the damping matrix and [K] is the stiffness matrix of the structure, 

{f} is the external excitation force vector and {x} is the displacement vector of the degrees of freedom. 

The solution of the eigenvalue problem gives the natural frequencies i and the modal shapes {i}, 

characterizing the dynamic behavior of the structure [11, 5]. Once the natural frequencies and the mode 

shapes are obtained, it is possible to write the Frequency Response Function (FRF) of the system, which 

is [5]: 



 

3 

 
𝐻(𝜔)𝑗𝑘 = ∑

𝑖=1

𝑁 {𝜓𝑗𝑟}
𝑇{𝜓𝑘𝑟}

𝜔𝑟 + 𝜔2 + 2𝑖𝜁𝜔𝑖𝜔
 (9) 

 

Where 2ii is related to the damping. The FRF is a transfer function, expressed in the frequency- 

domain which relates the output of the system to the unit input at each frequency. 

The PSD of the excitation SXX (ω) can be related to the PSD of the response SYY(ω) by means of the 

FRF [15] as follows: 

 𝑆𝑌𝑌 = 𝐻(𝜔)2𝑆𝑋𝑋(𝜔) (10) 

The response characteristic can be expressed in term of displacement, stress or acceleration [15]. 

2.3. Spectral fatigue damage estimation 

 In uniaxial testing of a specimen, the relation between the stress level  and the number of cycles 

before failure N are described by the Basquin equation [12]: 

 𝜎𝑖 = 𝐶𝑁−1/𝑏 (11) 

where  is the stress amplitude, C is the fatigue strength coefficient and b is the fatigue exponent, which 

describes the behavior of the Wöhler diagram [12]. In case of variable amplitude loading, the common 

way to compute the fatigue damage is under the hypothesis of the linear accumulation principle 

expressed by the Palmgreen and Miner’s rule [12,13]: 

 
𝐷𝑖 = ∑

𝑛𝑖

𝑁𝑖

 (12) 

where ni is the number of cycles in the stress amplitude i and Ni are the allowable number of cycles at 

the stress amplitude I.  When D=1, it is assumed that structural failure occurs [12,13]. 

Knowing the probability distribution function p() of the random vibration and the Wöhler curve 

parameters, the damage could be estimated using the following expression [3]: 

 𝐷𝑖 = 𝐸𝑝𝐶
−1∫

0

∞
𝜎𝑘𝑝(𝜎) ∗ 𝛥𝜎 

(13) 

with k=1/b. Many methods for estimating the fatigue damage are available [4, 11]. The principal 

difference between them is the way they approximate the probability density function (PDF) p(). 

Some of them, as Wirsching-Light method [20], Ortiz Chen method and Tovo-Benasciutti method 

[2], start from the PDF of a narrowband vibration and propose a correction factor for the fatigue life in 

order to obtain a broad band distribution fatigue life. Other methods, like Dirlik method [4], Zao-Baker 

method [21], Lalanne method [8] and Larsen-Lutes method [9], propose an alternative interpretation of 

the PDF [15, 19]. 
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3. Experimental test 

The experimental part is made of three steps: experimental modal analysis (EMA), steady state 

dynamic analysis (SSD) and vibration fatigue tests.  

3.1. Specimen parameters 

The specimen used for the experiments is made of AISI 304 (Figure 1). It is designed with two 

notches to speed to induce the failure in the notch [16]. Two specimens (named A-1 and A-2) were 

used for model calibration and validation. The properties of the specimens are reported in Table 1.  

Figure 1 - Specimen geometry 

Table 1 - Physical properties of the specimens 

Properties Specimen A-1 Specimen A-2 

Thickness [mm] 1,19 1,19 

Mass [kg] 0,1127 0,0113 

Density [kg/m3] 7982,50 8003,75 

Fatigue exponent b [17] 0,2 0,2 

3.2. Specimen dynamic response 

In the EMA, the specimens were fixed as a cantilever beam as illustrated in the Figure 2. The A-1 

specimen was excited by means of an impact hammer in 6 different points on longitudinal axis with the 

aim of obtaining the flexional mode shapes excited as shown in Figure 3. 

The specimen response was evaluated by an accelerometer placed in the free end. Hammer and 

accelerometer signal were acquired by means of LMS Test lab software.  

Figure 2 - Experimental test bench    Figure 1 - Positions of the impacts 
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Successively, a steady state dynamic analysis has been performed, with the aim of determining the 

acceleration FRF. Tests were run by means of an electrodynamic shaker and with a closed loop control 

system [19], connected to a computer (Figure 4), the two specimens have been subjected to an 

acceleration of 1g over the frequency range [5-300 Hz]. The value of natural frequencies and modal 

damping extracted are reported in Table 3. 

3.3. Random vibration fatigue tests 

Random vibration fatigue tests were performed with the electrodynamic shaker and the closed loop 

control system as shown in Figure 4.  

Figure 4 - General layout of the system, shaker, closed loop control system and accelerometer 

The acceleration was described by the corresponding PSD. For analyzing the fatigue properties of 

the material, Locati method was used, by means of step loading starting below the fatigue limit and 

gradually increasing of a set step size until specimen failure [19]. According to the frequency obtained 

with SSD analysis, the load frequency range was 43-123 Hz, centered to the second frequency 83 Hz; 

the corresponding bandwidth was 80 Hz. The initial PSD load was set to 0,25 g2/Hz and the step size 

was defined as 0,05 g2/Hz (Table 2). The specimen A1 failed at 0,75 g2/Hz after 10h42min and the 

specimen A2 failed at 0,8 g2/Hz after 11h15min (Figure 5 & 6) 

Figure 5 – Load history of specimen A1   Figure 6 – Load history of specimen A2 

Test 1 2 3 4 5 6 7 8 9 10 11 12 

PSD [g2/Hz] 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8(only for A_2) 

Table 2 – PSD of the step input 
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4. Simulations  

Simulation model representing with reliable accuracy the dynamic behavior of the specimens, are 

proposed by finite element analysis. Modal analysis and SSD are executed with ABAQUS with 4408 

hexagonal elements which 2 elements in the thickness. The quadratic interpolation is chosen. 

The value of density required is the average of those in Table 1, instead Young’s Module (E), with the 

value of E=190MPa, is achieved from natural frequencies [10] extracted from EMA (Table 3) in order 

to obtain a more accurate value (Table 3). 

Figure 7 – Simulation of the 3 first flexional modes  

For estimating the simulated-FRF of the model, the values of structural damping are needed. The firsts 

attempt value are those extracted from EMA, then they were updated in order to achieve close to the 

experimental FRF one (Figure 8). The natural frequencies of flexional mode shapes are given in Table 

3 as well as the relative error between the simulation and the average of experimental data  

 

Table 3 - Frequencies values and errors 

 

Table 4 - Damping Values 

 Mode 1 2 3 
Experimental Modal Analysis results   [%] 7,8 2,6 1,4 

ABAQUS FRF (after updating )   [%] 6,8 3,1 3 

Finally, the stress-FRF over the frequency range on the notch is shown in Figure 9. 

 Mode 1 2 3 

Experimental Modal Analysis results Frequency [Hz] 14,02 76,30 238,10 

Experimental SSD analysis 
Frequency (A1) [Hz] 15,89 81,54 232 

Frequency (A2) [Hz] 16,08 83,29 237,16 

ABAQUS (after updating E) Frequency [Hz] 15,5 82,95 224,3 

Experimental /ABAQUS  Mean Relative error frequency (%)   1 3,2 4,8 

FRF /ABAQUS SSD Experimental Mean Relative error amplitude (%) 2 3,7 12 
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Figure 8 – Experimental and simulated FRF accelerations.   Figure 9 – Simulated max stress-FRF 

5. Validation 

From ABAQUS FRF model and according with the Locati method, the spectral fatigue damage value 

corresponding to every PSD-loading history is estimated by means of the Palmgreen-Miner model 

(eq.12) on the notch (max stress). In table 5 and 6, the results from the simulation for each of the two 

specimens are shown according with their experimental values. 

Table 5 - Specimen A-1 : Spectral fatigue Damage estimation 

PSD[g2/Hz] 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75  
gRMS [g] 4,5 4,9 5,3 5,7 6 6,3 6,6 6,9 7,2 7,5 7,8  

Time [s] 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 2520 Di 
Damage  0,008 0,016 0,029 0,046 0,069 0,095 0,127 0,164 0,210 0,253 0,127 1,1 

Table 6 - Specimen A-2 : Spectral fatigue Damage estimation 

PSD [g2/Hz] 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8  

gRMS [g] 4,5 4,9 5,3 5,7 6 6,3 6,6 6,9 7,2 7,5 7,8 8,1  

Time [s] 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 876 Di 

Damage 0,008 0,016 0,03 0,05 0,07 0,1 0,13 0,16 0,21 0,25 0,31 0,09 1,3 

6. Conclusion  

To summarize, in this paper, it has been presented a validated FEM model to simulate virtual random 

fatigue tests and to analyse the fatigue behaviour of the component. At the beginning, a dynamic analysis 

of the specimen was required. The results of simulated modal analysis and the simulated FRF were 

compared to results obtained from EMA and SSD. As illustrated in table 3, the error between the average 

of the experimental resonant frequencies and the simulated ones are less than 5%. The damping values 

used for the simulation are the result of an iteration starting from the experimental value. The fatigue 

test was conducting according the Locati method and damage value of each PSD load level, was 

extracted. The simulation fatigue cycle load, reproduced the Locati method, offers result fairly close to 

experimental ones, under the hypothesis of linear damage accumulation. So, it could be concluded that 

the model is a good representation of the fatigue behaviour of the metallic material 
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An extension of this research may be the comparison of the Max stress with strain gauges. In addition, 

it may be an interested the study of multiaxial random loading, considering that he presented model 

takes into consideration the uniaxial case 
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