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Résumé — Effective properties of polycrystals are often estimated by taking into account solely the 

intrinsic variabilities in crystallographic orientations along with those of the morphological shapes of 

the grains. The variability on the single crystal elastic moduli is not considered. In this work, we 

calculated the analytical estimates for effective elastic moduli of numerically generated equiaxed cubic 

polycrystals. The influence of the variability of the components of the single crystal elasticity tensor on 

the statistical properties of the homogenized macroscopic stiffness tensor is investigated. 
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1. Introduction 

Polycrystals are composed of many crystallites or grains with varying size and orientation whose 

apparent mechanical properties are often of interest. The different crystallographic orientations and the 

spatial morphology of grains in polycrystals ultimately determine most of the effective mechanical 

properties at macroscopic scale. In most theoretical and numerical works related to the effective 

properties of polycrystals, these two inherent variabilities are often considered by introducing the 

randomness on the grain orientations and their morphological texture. For a given phase, the single 

crystal elastic properties of each grain are assumed to be constant and deterministic in the reference 

frame of the grain. However, the local stiffness tensor is not constant and has variabilities. For instance, 

several studies reported different values for the components of the elasticity tensor of α-Fe monocrystals 

[1, 5, 7, 12, 15, 18, 21]. This variability on the local stiffness tensor may come from the changeability 

of the distribution of the addition elements in different grains, which results in a significantly non-

uniform chemical composition of the grains (from one grain to another). Numerical models introduce 

these variabilities as randomness introduced on the elasticity matrix (for more details see C. Soize [19] 

and references therein). The uncertainty on the elasticity tensor of the individual grains and its influence 

on the statistical properties of the homogenized stiffness tensor of polycrystalline materials being 

unexplored, it will be the main focus of this work.  

In this study, we will present a method to construct numerical models of polycrystals by introducing 

the variabilities both on the elastic moduli of grains and on the crystallographic orientations based on 

the experimental electron backscatter diffraction (EBSD) data. This method will be introduced in Sec. 

2. Sec. 3 discusses the self-consistent method to estimate the effective elastic properties. Finally, the 

results are shown and discussed in Sec. 4.    

2. Numerical model for simulation of polycrystals         

2.1. Numerical simulation of random elasticity tensors 

The fourth-rank elasticity tensor of a cubic medium is composed of three independent parameters 

c11, c12 and c44 on a single crystal scale. It could be decomposed as a linear combination of three 

linearly independent tensors ℙ, ℚ, 𝕎 and three positive eigenvalues λ1, λ2, λ3: 
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ℂcubic = λ1ℙ + λ2ℚ + λ3𝕎. (𝟏) 

The eigenvalues (λ1, λ2, λ3) with multiplicities of 1, 3 and 2 are linked to the elastic moduli as: 

λ1 = c11 + 2c12, λ2 = c44, λ3 = c11 − c12.   (𝟐) 

The fourth-rank tensors ℙ, ℚ and 𝕎 are mutually orthogonal. The definitions of them in terms of the 

crystallographic directions of a cubic medium can be found in [14]. 

Following Guilleminot and Soize [6] and based on the maximum entropy principle, the eigenvalues 

in the tensor decomposition of Eq. (1) are statistically independent gamma-distributed random variables. 

We assume that the coefficient of variation of λ2 be δ (i.e., δλ2
 = δ), then for other two eigenvalues we 

get δλ1
=√3δ2/(1+2δ2)  and δλ3

=√3δ2/(2+δ2) , respectively. The Gamma marginal probability 

density functions (PDFs) of these independent eigenvalues can be written in terms of the dispersion 

level δ and the average elastic moduli (c11, c12, c44) as: 

λ1 ~ G (
1 + 2δ2

3δ2
,
3(c11 + 2c12)δ2

1 + 2δ2
) ;     λ2 ~ G (

1

δ2
, c44δ2) ;     λ3 ~ G (

2 + δ2

3δ2
,
3(c11 − c12)δ2

2 + δ2
) . (𝟑) 

Random elasticity tensors of cubic media ℂcubic  could be generated according to tensor 

decomposition (Eq. 1) and their fluctuation level could be defined by a single parameter δ. Based on 

different experimental estimations of the elastic moduli of α-Fe monocrystals reported in [1, 5, 7, 12, 

15, 18, 21], the coefficient of variation of shear modulus is estimated as δ = 0.03. For our numerical 

investigations, due to the lack of the experimental dataset, we assume the maximum value of δ to be 

nearly three times of our estimated value. Thus, we chose the values of δ on the interval [0, 0.1]. The 

mean values of c11, c12 and c44 are given in Table 1 for our studied materials. Fig. 1 shows the PDFs of 

components c11 , c12  and c44  of the random elasticity tensor ℂcubic  for α-Fe with three different 

fluctuation levels, δ ∈ {0.005, 0.05, 0.1}. As expected, larger values of δ increase the variance of the 

corresponding distributions. 

Table 1 – Average values of single crystal elastic moduli (GPa) and anisotropy index A for nine cubic materials 

[4, 10]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – PDFs of the components c11 (left), c12 (middle) and c44 (right) of numerically generated elasticity 

tensor ℂcubic for α-Fe with different fluctuation levels δ. 

 

Name Al Pt α-Fe Ni Au Cu K Na Li 
c11 108 347 234.2 247 191 169.68 3.71 7.39 13.5 

c12 62 251 137.7 153 162 122.55 3.15 6.22 11.44 

c44 28.3 76.5 115.1 122 42.2 74.49 1.88 4.19 8.78 

A 0.23 0.59 1.39 1.60 1.91 2.16 5.71 6.16 7.52 
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2.2. Numerical simulation of random crystallographic orientations 

In Sec. 2.1, we generated random elasticity tensors with a given fluctuation level δ for a single crystal 

in its local coordinates. Using the so-called Bond transformation matrix, one can transform the stiffness 

matrix Clocal in local coordinates into Cglobal in polycrystalline global reference via:  

Cglobal(δ) = MClocal(δ)MT. (𝟒) 

We subsequently aim at generating the Euler angles random fields based on a real sample. The 

microstructural map of this sample is deduced from EBSD technique by using experimental data from 

G. Doumenc [2], which is displayed in Fig. 2. The PDFs of the Euler angles (Θ1, Θ, Θ2) in Fig. 2 clearly 

show they have a non-Gaussian probabilistic content. According to our estimation, the two-point 

normalized auto-correlation function (NACF) of the random Euler angles of this sample follows an 

exponential form as: 

R̂XX(η) = exp (−
η

𝑙X

) , X ∈ (Θ1, Θ, Θ2), (𝟓) 

with 𝑙X = (𝑙Θ1
, 𝑙Θ, 𝑙Θ2

) ≅ (5.525, 6.452, 6.452) μm being the correlation lengths and η the distance 

between any two points. The exponential fit for the estimated R̂Θ1Θ1
 is shown in Fig. 2. Thus, the Ng×Ng 

normalized auto-correlation matrices for Ng grains can be expressed as:  

R̂XX(𝐱m, 𝐱n) = exp (−
1

𝑙X

‖𝐱m − 𝐱n‖) , m, n = 1, … , Ng, X ∈ (Θ1, Θ, Θ2), (𝟔)  

where xm  and xn  are spatial positions of the centroids of any two grains, 𝑙X  are the corresponding 

correlation lengths. The two-point normalized cross-correlation functions (NCCF) of the random Euler 

angles of this sample are 0, implying that different Euler angles are decorrelated. 

 

 

 

 

   

 

 

Figure 2 – Microstructural EBSD map of a real sample (left), with its PDFs of Euler angles (Θ1, Θ, Θ2)  (middle) 

and the best fit for the NACF R̂Θ1Θ1
 (right). 

The simulation of a desired non-Gaussian process can be performed by first generating a standard 

Gaussian process with an appropriate target covariance function. A Gaussian random field 𝐙 can be 

represented as a Karhunen-Loève (K-L) series expansion [11, 20] since K-L expansion is the most 

efficient method for representing the random process if the exact eigenvalues and eigenfunctions of the 

covariance function can be found:  

𝐙(𝐱, ϑ) ≅ ∑ √αiβi(𝐱)γi(ϑ)

Ng

i=1

, (𝟕) 

where Ng is the number of grains, 𝐱 is the spatial position being the centroid of each grain, {γi(ϑ)} is a 

set of uncorrelated standard Gaussian random variables, αi are eigenvalues and βi(x) are ℝ3-valued 

eigenvectors of the covariance matrix [RXX(xm, xn)]. 
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Using the so-called inverse transform sampling technique, one can transform the random field of    

Eq. (7) to a random field having a different marginal PDF. The corresponding spatially correlated Euler 

angles for one crystal can thus be generated as the following transformation: 

𝑥X
n = FX

−1 (𝚽(𝐙X(𝐱n))) ,   X ∈ (Θ1, Θ, Θ2),    n = 1, … , Ng, (𝟖) 

in which ZX(xn) is zero mean unit-variance component of an ℝ3-valued Gaussian random field that we 

generated by using Eq. (7), 𝐙X(𝐱n) = (𝐙Θ1
(𝐱n), 𝐙Θ(𝐱n), 𝐙Θ2

(𝐱n)), Φ is the prescribed marginal CDF 

of a standard Gaussian variable, and FX
−1 is the inverse CDF of the target marginal PDF of the random 

field. 

2.3. Numerical simulation of polycrystals and simulation parameters 

Using the open-source software NEPER [16-17], 500 realizations of a polycrystalline microstructure 

were numerically simulated, each of which constituted of 1000 equiaxed grains. A voxel-based 

tessellation approach is used to generate each realization being a 1 μm × 1 μm × 1 μm cube. One of the 

models along with its grain size statistics is shown in Fig. 3. It should be noticed that the centroid location 

and the size of each grain in each model differ from each other. 

 

 

 

 

 

 

 

Figure 3 – A realization of a numerically simulated polycrystal using NEPER (left), with PDFs of its equivalent 

diameter deq (middle) and that of the grain volumes Vg (right). 

Euler angles random fields are then numerically simulated based on the abovementioned sample. 

The Euclidean norm is used to calculate the distance between two centroids of crystals. We consider a 

correlation length of three times the average equivalent diameter 𝑑𝑒𝑞  ( 𝑑𝑒𝑞 ≈ 0.124 μm ) of 

aforementioned numerically simulated polycrystals, the NCCFs are 0, the NACFs (R̂Θ1Θ1
, R̂ΘΘ and 

R̂Θ2Θ2
) of the random Euler angles are supposed to be the same and follow the form of Eq. (6) with the 

estimated values of 𝑙X: 

 𝑙X  =  (𝑙Θ1
, 𝑙Θ, 𝑙Θ2

) ≅  (0.372, 0.372, 0.372) μm. (𝟗) 

Nine cubic materials with different levels of anisotropy are studied, whose average elastic parameters 

are given in Table 1. Zener anisotropy index AZ = 2c44/(c11 - c12)  [22] is used to measure the 

anisotropy level A, which is defined as A = |1 - AZ|. It should be pointed out that for the particular 

isotropic case, Zener anisotropy index AZ equals to 1, thus the value of the defined anisotropy level A 

vanishes. Random elasticity tensors with fluctuation level δ and spatially correlated crystallographic 

orientations for these materials are simulated using MATLAB.  
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3. Computational framework by using self-consistent method 

The so-called self-consistent method was originally proposed by Hershey [8] and Kröner [9] to 

predict the macroscopic elastic properties for aggregates of crystals. Eshelby’s work [3] shows that if 

uniform strains are applied in far-field of unbounded homogeneous isotropic medium, an ellipsoidal 

inhomogeneity embedded in this medium would also feel a uniform strain. Based on them, Lubarda [13] 

gives the expression of the fourth-rank concentration tensor Αijkl for cubic crystals with spherical shape 

surrounded by isotropic polycrystalline aggregates as: 

Aijkl = Iijkl + k(δijδkl + 2Iijkl − 5Tijkl), (𝟏𝟎) 

wherein Iijkl is the second-rank identity tensor, Tijkl is the random rotation tensor that can be decomposed 

to the rotation matrices in terms of Euler angles (Θ1, Θ, Θ2). Moreover, k is calculated in terms of 3 

parameters c11, c12 and c44
* :  

k =
(c11 + 2c12 + 6c44

∗ )(c11 − c12 − 2c44
∗ )

3[8c44
∗ 2 + 9c11c44

∗ + (c11 − c12)(c11 + 2c12)]
, (𝟏𝟏) 

in which c44
*  is the positive root of the following cubic equation: 

8(c44
∗ )3 + (5c11 + 4c12)(c44

∗ )2 − c44(7c11 − 4c12)c44
∗ − c44(c11 − c12) (c11 + 2c12) = 0. (𝟏𝟐) 

Following Lubarda, self-consistent estimate of elasticity tensor for spherical geometry cubic crystals 

can be expressed as: 

Cijkl
sc = CijmnAmnkl, (𝟏𝟑) 

where Cijmn is fourth-rank elasticity tensor of crystal. 

    The effective stiffness tensor of polycrystals with volume V for Nreal realizations can thus be calculated 

using the volume average: 

〈Cijkl
sc,j〉 =

1

V
 ∫Cijkl

sc,j(𝐱)d3𝐱
Γ

, j = 1, … , Nreal, (𝟏𝟒) 

where Γ is the cubic domain of definition of each realization. The effective bulk and shear moduli could 

be subsequently calculated in terms of the corresponding volume averages 〈Cijkl
sc,h〉 for each realization. 

4. Numerical results and discussion 

The numerical study on the effective elastic properties of nine cubic materials defined in Table 1 has 

been done. Statistical convergence of first and second-order statistics is investigated on 500 realizations 

of each material. The convergence criterion is defined as the corresponding error being less than 2 %.  

  

 

 

 

 

 

Figure 4 – Corresponding errors of first and second-order statistics of elastic modulus c44
sc  of α-Fe. The 

crystallographic orientations are spatially correlated random fields with a fluctuation level δ = 0.1. 
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Fig. 4 shows that the corresponding errors of the first and second-order statistics of elastic modulus 

c44
sc  for α-Fe. The crystallographic orientations here are spatially correlated random fields with a 

fluctuation level of δ = 0.1. From Fig. 4, it is shown that both the first and second-order statistics 

converge for 500 realizations. It should be noted that this statistical convergence investigation has also 

been done on c11
sc  and c12

sc  for each material in Table 1 and similar results can be obtained as shown in 

Fig. 4.  

 

 

       

 

 

 

 

 

 

Figure 5 – PDFs of the effective bulk and shear moduli based on 500 realizations of α-Fe polycrystal with 

different dispersion levels δ. The crystallographic orientations are spatially correlated random fields. 

 

Figure 5 shows, for different dispersion levels δ, the distributions of the effective bulk and shear 

moduli based on 500 samples of α-Fe. It can be seen that with a higher fluctuation level, the range is 

wider, together with a higher variation level.  

 Table 2 – Coefficients of variation of effective bulk and shear moduli of Al, α-Fe and Li for 500 realizations. 

The crystallographic orientations are spatially correlated random fields with four fluctuation levels. 

 

The cumulative coefficients of variation (cumCoV) of the effective bulk and shear moduli (κ, μ) of 

these cubic materials have been calculated. Using the bootstrap approach with a resampling size of 

10000, 95 % two-sided confidence intervals of the cumCoV of (κ, μ) of α-Fe polycrystals with two 

fluctuation levels (δ = 0.005 and δ = 0.1) are plotted in Fig. 6. The results show that higher fluctuation 

levels 𝛅 result in larger values for the cumCoV of both κ and μ. This tendency could be found in all 

materials among which we have chosen three cubic materials Al, α-Fe and Li having the lowest, 

intermediate and the highest anisotropy degrees and the values of their coefficients of variation of the 

effective bulk and shear moduli are listed in Table 2. From Table 2, a small fluctuation level (δ = 0.005) 

on elastic tensor of crystals will obviously influence the cumCoV of the effective bulk modulus of the 

polycrystals. As δ  increases, cumCoV of the effective shear modulus is influenced and the value 

becomes gradually larger.  

 

Name 
Coefficient of variation 

Bulk modulus κ (MPa) Shear modulus μ (MPa) 
δ = 0 δ = 0.005 δ = 0.05 δ = 0.1 δ = 0 δ = 0.005 δ = 0.05 δ = 0.1 

Al 0.00138 0.00146 0.00468 0.00896 0.00181 0.00181 0.00274 0.00443 
α-Fe 0.00816 0.00818 0.00917 0.01152 0.00783 0.00783 0.00815 0.00886 

Li 0.01370 0.01372 0.01427 0.01575 0.01924 0.01924 0.01939 0.01975 
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Figure 6 – Coefficient of variation of the effective bulk and shear moduli of α-Fe polycrystals in terms of the 

realization numbers along with two-sided 95 % confidence intervals. The crystallographic orientations are 

spatially correlated random fields with two fluctuation levels (δ = 0.005 and δ = 0.1). 

Fig. 7 depicts the variation of the coefficient of variation of the effective elastic properties of the 

materials summarized in Table 1 in terms of the number of realizations, for a fluctuation level of δ = 0.1. 

The former reveals that higher anisotropy indices imply larger fluctuation levels of the effective 

properties. For instance, when the elastic parameter c44  of the stiffness matrix of Li in its local 

coordinates has a fluctuation level of δ = 0.1, the corresponding effective bulk and shear moduli will 

have fluctuation levels of about 1.6 % and 2 %, respectively. This result shows the importance of taking 

into consideration the variability on the single crystal elastic moduli on our numerical modeling. 

 

 

 

 

 

 

 

Figure 7 – Coefficient of variation of the effective bulk and shear moduli of nine cubic polycrystals in terms of 

the realization numbers. The crystallographic orientations are spatially correlated random fields with the 

fluctuation level δ = 0.1. 
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5. Conclusion      

In this work, random elasticity tensor with a given fluctuation level δ was numerically simulated. By 

introducing the variabilities on the elastic moduli of grains, numerical models of polycrystals were 

constructed, whose crystallographic orientations are spatially correlated random fields based on the real 

sample. The influence of this variability on the statistical parameters of the effective elastic properties 

of polycrystals for nine different cubic materials was investigated by using the self-consistent method. 

The results show that even if the single crystal elasticity tensor has a small fluctuation level, it will still 

have an impact on the distribution of the effective bulk and shear moduli of the polycrystal.  

The next step is to use the finite element method to estimate the effective elastic properties of textured 

materials having any given class of material symmetry. 
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