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Abstract: The problem of Topology Optimization aims to solve the question of the optimal 
material distribution subjected to known boundary and load conditions subject to a target volume 
fraction. In this study, we present a machine learning framework to tackle the problem of Multi 
Material Topology upscaling, i.e., the prediction of a higher resolution topology with just the low-
resolution input. A Convolutional Deep Neural network was trained with a data set generated from an 
iterative code found in the existing literature. The network architecture implemented in this study is a 
modified version of SRGAN which has proven capabilities in upscaling complex real-world images. 
In this study, the perceptual loss function was used as the loss function in order to not penalize the 
network for its predictions that are off by a couple of pixels while simultaneously rewarding the 
network for its outputs that yield accurate compliance. The paper aims to present a novel approach to 
the problem of Topology Upscaling of 2x by mapping local features of the low-resolution topology to 
their higher resolution counterparts. 
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1. Introduction 

The problem of optimal topology has existed for at least a century now. One of the most elegant 
solutions was given by O. Sigmund in his landmark paper proposing an iterative method to solve the 
problem of topology optimization called SIMP, where he introduced a penalty on intermediate 
densities to obtain optimal topology [1]. However, the quality of the output depends highly on the 
mesh size. The time for convergence, is low at lower mesh densities, and exponentially increases by 
the power of two as the mesh size increases (Figure 1). Thus, if the code was used for an industrial 
application, the simulation time would be significantly higher. Although many efforts have been made 
to improve O Sigmund’s approach, the gains have been marginal [2].  

 

   

(a) Mesh 50x25, 408 it, 24 sec (b) Mesh 100x50, 408 it, 106 sec (c) Mesh 200x100, 408 it, 414 sec 

Figure 1 Evolution of optimal topology with mesh size on an MBB test case using a multimaterials approach [6] 
 

https://wali-m.isae.fr/SOGo/so/a.kanthamraju/Mail/view
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Figure 2 Generator Network Diagram 

Generative Adversarial Networks have had great success in the realm of Image Processing. 
However, their implementation to tackle the problem of Topology optimization has had limited 
success. [3], [4] proposed solutions through image processing techniques to upscale the optimal 
topology. [3] describes the implementation of a Pixelwise loss function and [4] locally refined the 
mesh and extrapolated the features directly from the low-resolution (LR) topology output to a higher 
resolution (HR) output. Both studies in essence assume that the features of the optimal topology at 
lower and higher resolution are identical. However, this is most certainly not the case. This is because, 
by the very nature of the classical problem definition, the iterative algorithm tries to converge to a 
local minimum and not the global minimum. This results in vastly different structures for the same 
input condition as can be seen in figure 1. Thus, the assumption that the Higher and Lower topology 
will have identical features is not ideal if we are tackling the problem of upscaling the topology. This 
is the problem that this study tries to address. The more general question we want to tackle is “Can we 
infer High Resolution optimal topology from a set of HR/LR relationships?”. We choose here to use 
classical Deep Learning techniques. 

 

2. Network Architecture 

For the reasons described above, the goal of the Neural Net should be to predict the ideal optimal 
high-resolution topology for the true low-resolution input. The solution to such an objective is 
described in the paper by [5]. In the paper they propose a ‘SRGAN – Super Resolution Generative 
Adversarial Network’ that is capable of upscaling the input image to 4x with the definition of a custom 
loss function that they called ‘Perceptual Loss function’. The network architecture used in this study is 
the exact same as the ones they used however with a slight difference in both the network architecture 
as well as the characteristics of the training and validation data.  

The generator (Figure 2) consists of 16 residual blocks (B=16) with identical layout (not 
visualized in figure 2). In each block we have two convolutional layers each followed by a Batch 
Normalization layer and Parametric ReLu as the activation function. The image resolution is increased 
by 2x by using an Up-sampling Layer.  

 

 

 

The discriminator (Figure 3) consists of 6 convolution layers with an increasing number of 3x3 
filters increasing from 64 up to 256. The resulting feature maps are then followed by two dense layers 
and a final sigmoid activation to obtain the probability for sample classification.  
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Figure 3 Discriminator Network Diagram 

 

3. Loss Function 

 The loss function in this study consists of two parts. The ‘Content Loss’ and the ‘Adversarial 
Loss’. The content loss or the VGG loss is based on the ReLu activation layers of the nineteen-layered, 
pre-trained VGG Network. Mathematically the VGG Loss can be described as follows (equation 1)  

.                                               

Where, Øi,j represents the feature map obtained by the jth convolution before the ith max pooling 
layer in the trained VGG19 network. Then the VGG loss can be defined as the Euclidean distance 
between the feature representations of a reconstructed image GθG (ILR) and the reference image IHR. Wi.j 
and Hi,j represent the respective dimensions of the feature maps in the VGG network.  

The ‘Adversarial Loss’, as described below drives the generator in the direction where it can 
reach a point where its outputs can fool the discriminator. This is done to favor the solutions that lie on 
the manifold of the true optimal topologies. The generative loss can be described as  

 
Where DθD (GθG (ILR)) is the probability that the reconstructed image GθG (ILR) is a true optimal 

topology.  

(2) 

(1) 
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4. Data Set Characteristics and Experimental Setup 

The dataset used in this study was a custom labelled dataset that was created using the Multi-
Material Topology Optimization code described in [6]. The data set consists of optimized topologies of 
three materials whose Young’s modulus ratio was defined as 3:2:1. The optimal topologies were 
generated with void volume fractions ranging from 0.2 to 0.5 with a 0.01 increment. The material 
volume fraction was divided into the ratios given in table 1. 

Table 1 Material Distribution Ratios of Optimal Topologies in the Dataset 

   

 

 With the above-described material ratios and the void volume fraction sweep, there were 589 
unique input data points. Of these 589 input data points, 250 equi-spaced data points were selected and 
optimal topologies were generated for Cantilever and MBB boundary conditions. The mesh size that is 
used in the individual experiment is described in table 2. The data set was split into two independent 
sets. Testing data that consists of 80% of the data and the validation containing the remaining 20% of 
the data. The environment that was used for the study is as follows: Python – 3.8.8, TensorFlow – 
2.4.1, Training was performed on an Nvidia GPU. 

The objective of this study was to evaluate the Network Architecture to predict the optimal 
topology in its existing state. So, as an initial proof-of-concept, three experiments were performed as 
described in the table below. 

 

Table 2 Description of Experiments Performed. 
 

Experiment  Boundary 
Conditions  

Mesh Size 
input   

Number of 
Epochs  

Time till 
Training 

Completion  

Number of 
data Points  

Exp-1  Cantilever  40x20 5000  22 Hrs 251 

Exp-2  Cantilever  100x50 5000 24 Hrs  251 

Exp-3 Cantilever + 
MBB 

40x20  6000 30 Hrs  502 

 

 

 



5 

5. Preliminary Results 

 

The preliminary results (shown in the appendix) of the experiments performed clearly 
demonstrate the network’s capability to map the features of the low-resolution input image to the 
corresponding features in the high-resolution image. The best results obtained were from Exp-1 in the 
single material case where, the optimal topology prediction visually matches the target topology. In 
the two- and three-material cases, there is still excess noise which is the case in Exp 1, Exp 2, Exp 3. 
Based on the preliminary results it can be concluded that, despite the networks capabilities, it struggles 
to handle multiple boundary conditions as seen from the results of Exp -3. Furthermore, the presence 
of noise within the predicted topology and outside, indicates the inadequacies of only using loss 
functions from the literature from Image Processing. A physics-based loss function in tandem with the 
existing loss function might improve the quality of the results.  
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Annex 

Experiment-1  

 

Low-Resolution Input                        Generator Output                              True High-Resolution Output 

 

 

Experiment-2 

  

Low-Resolution Input                        Generator Output                              True High-Resolution Output 
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Experiment-3 

 

Low-Resolution Input                        Generator Output                              True High-Resolution Output 

 

  
GitHub Repository: https://github.com/Anirudh-Kanthamraju/Multi-Material-Topology-Optimisation 


