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Résumé — The myocardium is a highly anisotropic material. However, the link between the 
microstructure and the macroscopic mechanical properties is still not fully understood. In order to shed 
light on this question, we analyzed the macroscopic mechanical behavior of cardiac tissue homogenized 
from different mesostructures. The anisotropic material behavior induced by these microstructures was 
compared to available experimental data. This study confirms the importance of collagen in assuring the 
tissue’s anisotropic response observed experimentally. 
Mots clefs — Cardiac Mechanics; Anisotropy; Micromechanics; Homogenization; Optimization. 

1. Introduction 
Over the years, the myocardium has been modeled at the tissue scale as an isotropic (Demiray, 1976), 

transversely isotropic (Humphrey & Yin, 1987) or orthotropic (Costa et al., 2001) continuum. One 
breakthrough experiment is the one from (Dokos et al., 2002), who subjected 3×3×3 mm³ samples of 
porcine left ventricles to shear tests in six directions, revealing the somewhat light but still clear 
anisotropy of the myocardium at the tissue scale. An important question arises, of the microstructural 
origin of this anisotropy. Indeed, a better understanding of the structure-properties relationships in the 
myocardium could lead to more robust model-based biomedical engineering computational tools for the 
diagnosis and treatment of cardiac diseases (Lee et al., 2014). At the cellular level, the cardiomyocytes, 
which account for ca. 80% of the myocardial volume, are shaped as elongated cylinders and surrounded 
by a thin layer of collagen (the endomysium), suggesting a transversely isotropic symmetry. At least 
two microstructural features could explain the macroscopic anisotropy: (i) the local orientation of the 
cardiomyocytes varies rapidly throughout the myocardium, with an helix angle varying by ca. 120º 
between endocardium and epicardium; (ii) at an intermediate (meso) scale, the arrangement of 
cardiomyocytes into bundles forming branching laminae and surrounded by thicker collagen layers (the 
perimysium) (Costa et al., 2001; Tueni et al., 2020). In order to investigate these various hypotheses, we 
designed a multi-scale model of the myocardium, bridging the cell, sheetlet and tissue scales. The model 
is associated to an optimization procedure, allowing to find the microscopic parameters that best match 
the macroscopic data. Thus, the model and optimization procedure, presented now, permit the 
quantitative selection of hypothesis regarding structure-properties relationships. 

2. Methods 

2.1. Data 
In this work, we use the data from (Dokos et al., 2002). We verified that the anisotropy, i.e., the ratio 

between the different shear components, did not vary significantly with the applied deformation. Thus, 
we selected the shear values at 5% deformation, and fit them with a linear elastic model where each 
constituent obeys the Hooke law. 
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2.2. Model 
2.2.1. Cellular scale 

Based on standard assumptions (Humphrey & Yin, 1987), we considered the myocardium to be 
transversely isotropic at the cellular scale. We considered both compressible and quasi-incompressible 
laws. 

2.2.2. Sheetlet scale 

We considered two different arrangements on the sheetlet scale. The first model (H) is homogeneous, 
that is to say that no mesostructure is considered. The second model (S) is stratified, with a thin layer 
(5% total volume) of perimysial collagen in between layers of transversely isotropic myocardium. To 
reduce the number of microscopic parameters, we considered an isotropic law for the collagen. Again, 
both compressible and quasi-incompressible laws have been studied. The stratified mesostructure (S) 
was homogenized through periodic homogenization. 

2.2.3. Tissue scale. 

On the tissue scale, we reproduced the experimental configuration, with cubic samples subjected to 
simple shear tests. Variations of fibers and sheetlets orientation were taken into account within the cubes. 
All finite element computations were performed using the FEniCS library (Logg et al., 2012). 

 

 
Figure 1 — Schematic of the hierarchy of scales. 

 

2.3. Optimization procedure 
The proposed model being linear, the stress depends linearly on the stiffness, so we only fitted five 

macroscopic shear ratios (taking the largest of the six shear values as reference), and fixed one 
microscopic Young modulus to reduce the number of parameters. Our cost function is 
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where 𝑅$ are the computed shear ratios, and 𝜇$ & 𝜎$ are the experimental means and standard deviations 
of the shear ratios. The compressible transversely isotropic model had 5 free parameters, while the 
stratified model had 8. Optimization was performed using CMA-ES (Auger & Hansen, 2005), a 
derivative-free optimization tool. 
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3. Results and discussion 
Results for the optimal models based on homogeneous and stratified mesostructures, and 

compressible material laws, are shown in Figure 2. 

 

    
                       (a) Homogeneous mesostructure (H).                                    (b) Stratified mesostructure (S). 
Figure 2 — Comparison of experimental (box plot: lower to upper quartile; whiskers: lowest datum above Q1 – 
3*(Q3-Q1)/2, and highest datum below Q3 + 3*(Q3-Q1)/2, where Q1 and Q3 are the first and third quartiles; 

green triangle: mean; orange line: median; hollow circles: data points outside the whiskers) and theoretical (blue 
bar plot) shear stresses (normalized with respect to largest value). 

 

It is clear that only the model based on the stratified meso-structure, hence taking into account the 
sheetlet arrangement, can reproduce the order of the various shear components. Moreover, we saw that 
quasi-incompressible material laws did not allow to properly fit the experimental data. 

4. Conclusions 
Our main conclusion is that it is not possible to fit the Dokos shear experiments data with a 

transversely isotropic model. In other words, solely taking into account the transversely isotropic nature 
of the myocardium at the cellular scale, plus the variation of myofiber orientation through the 
myocardium, but no intermediate structure such as collagen planes, does not allow to describe the 
measured anisotropy at the macroscopic scale. Conversely, by taking into account the microstructural 
organization at the sheetlet scale, and the variation of the sheetlet orientation through the ventricle, it is 
possible to reproduce the macroscopic data. An additional finding is that some level of compressibility 
is required to fit the data. These findings call for a more thorough analysis of the mesostructural 
arrangement of the myocardium, and its role on the ventricular mechanics. 
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