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Abstract — This paper shows how to integrate polycristal behaviours obtained by the Berveiller-
Zaoui homogeneization scheme (1) using an implicit integration scheme. Such polycristalline
behaviours require special care as the number of internal state variables can be very high:
typically several hundred state variables may be involved.

In the literature, explicit schemes are therefore classically used. To the best of our knowledge, the
presented implicit scheme is original and is made feasible by the use of a static condensation of
the internal state variables associated with each phase, the implementation of which is involved.

The presented implicit scheme may considerably reduce the computation efforts at the global
scale by providing the consistent tangent operator. The latter point may allow widespread use of
such models in large scale structural computations in standard finite element solver.

An application to zirconium alloys is used as an illustrative example following the work of Onimus
et al (2).

1 Introduction
The aim of this contribution is to describe briefly the implementation of a simple self-consistent
polycrystalline model based on the use of the Berveiller-Zaoui concentration rule (1).

In this work, a phase is defined as a set of grains having the same crystallographic orientation.

This model provides an explicit relationship between the stress average over a given crystallo-
graphic phase, and the macroscopic applied stress. This model assumes both an isotropic elastic
behaviour and isotropic plastic behaviour at the macroscopic scale.

1.1 Outline

After a quick recall of the equations involved in Section 2, we describe in depth how to integrate
such behaviour using an implicit scheme.

Implicit schemes for the integration of polycrystal behaviours obtained by homogeneization have
been studied in previous works, see (3, 4) for example. However, those methods do not guarantee
a quadratic convergence locally (at the integration point scale) nor provide an exact consistent
tangent operator which guarantee a quadratic convergence of the equilibrium at the structural
scale.
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The proposed integration scheme is, to the best of our knowledge, original. This scheme is based
on a special choice of the integration variables and a static condensation technique to eliminate
the internal state variables of the crystallographic phases.

It is shown that this implementation is locally quadratically convergent and, since it provides an
exact tangent operator, quadratically convergent at the structural scale.

The latter point may allow the widespread use of such models in large scale structural compu-
tations. Moreover, this scheme is easily adaptable for complex local behaviours of the phases
and/or other homogeneization schemes.

1.2 Notations

• Σ: the macroscopic stress.
• Σeq: the macroscropic von Mises stress.
• Eto: the macroscopic strain.
• Evp: the macroscopic viscoplastic strain.
• Ng: number of grains/phases.
• σ(k): the stress average over the kth phase.
• φ(k): the volume fraction of the kth phase:

φ(k) = V (k)∑Ng

l=1V
(l)

• M : the macroscropic shear modulus.
• Nν : the macroscropic Poisson ratio.
• P : the equivalent macroscopic viscoplastic strain.
• g(k,i): average plastic slip along the ith slip system of the kth phase.
• µ(k,i): orientation tensor of the ith slip system of the kth phase.

2 Constitutive equations

2.1 The Berveiller-Zaoui homogeneization scheme

In the framework of macroscopically isotropic elasto-plastic behaviors, Berveiller and Zaoui have
derived a self-consistent polycrystalline model using a secant approximation for the linearization
of the non-linear behavior of materials (1). The grains of the polycrystal have equiaxed shape
and the texture of the material is isotropic. The local elasticity is assumed homogeneous and
isotropic. In the case of monotonous radial loadings Berveiller and Zaoui have shown that the
stress average σ(k) over a crystallographic phase (k) can be expressed explicitly as a function of
the local plastic strain εvp(k), the macroscopic stress Σ and the macroscopic viscoplastic strain
Evp.

The macroscopic strain Eto is split additively in a macroscopic elastic part Eel and a macroscopic
viscoplastic strain Evp:

Eto = Eel +Evp (1)

The macroscopic stress Σ is related to the macroscopic elastic strain Eel by the Hooke law:

Σ =D : Eel (2)

where D is an elastic isotropic macroscopic stiffness that can be expressed using the macroscopic
shear modulus M and the macroscopic Poisson ratio Nν .

The macrosopic viscoplastic strain is linked to the average plastic strain εvp(k) by a simple mixing
rule:
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Evp =
Ng∑
k=1

φ(k) εvp(k) (3)

where φ(k) is the volume fraction of the kth phase.

The local stress σ(k) is given by the following relationship1:

σ(k) = Σ + 2Mα(Σeq,P )(1−β(Nν))
(
Evp−εvp(k)

)
with β(Nν) = 2

15
4−5Nν

1−Nν
(4)

where:

• Σeq is the macroscropic von Mises stress.
• P is the equivalent macroscropic viscoplastic strain defined in an incremental way as follows:

Ṗ =
√

2
3 Ė

vp : Ėvp

with 0 as the initial value.

The function α(Σeq,P ) is called the accommodation function. It represents the plastic accommo-
dation between the Homogeneous Equivalent Medium and the considered crystallographic phase
(r) in inclusion (spherical inclusion). The expression of the accommodation function is as follows:

α(Σeq,P ) = 2Σeq
2Σeq + 3MP

Equations (3) and (4) are important as they summarize the Berveiller-Zaoui homogeneization
scheme, i.e. how the macroscopic and microscopic aspects are coupled. Equation (4) will be the
basis of the static condensation method used to build the implicit scheme presented in Section 3
because it shows that the average stress σ(k) only depends on the macroscopic variables Σ and
Evp and the viscoplastic strain εvp(k) of the considered phase.

Using this explicit concentration rule, it is particularly simple to compute the overall response of
a polycrystalline material, provided the intra-granular constitutive behaviour is known.

2.2 Intra-granular constitutive behavior

In this report, we assume that the local constitutive equations have the following form:

ε̇vp(k) = v(k)
(
σ(k)

)
(5)

where the microscopic plastic strain may results from the slips along the slip systems of the
crystal following:

ε̇vp(k) =
Ns∑
i=1

ġ(k,i)µ(k,i) with ġ(k,i) =
〈
σ(k) : µ(k,i)−R0

K

〉n
1The β(Nν) factor is closed to 1

2 for a macroscopic Poisson ratio close to 0.3. In this case, the Localisation
Equation (4) may be simplified as:

σ(k) = Σ +Mα(Σeq,P )
(
Evp −εvp(k)

)
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This constitutive equation is very simple, but extensions of the proposed integration scheme to
more complex ones, such as i.e. the Méric-Cailletaud behaviour (5), is straightforward using an
explicit scheme and feasible for the implicit scheme although more involved.

For the example, we will follow the work of Onimus et al. with sightly modified material coefficients
(2).

3 Implicit integration scheme

3.1 Former implicit integration schemes

Following the implicit integration scheme proposed in the past (see (3)), the set of integration
variables are the averages per phase of the stress field, namely the Ng symmetric second-order
tensors σ(k). These Ng unknowns are the solutions of the Ng system of equation (4), where Evp
and εvp(k) can be expressed as a function of these unknowns (relations (3) and (5), respectively)
while Σ is obtained from:

Σ =
Ng∑
k=1

φ(k)σ(k) (6)

The size of the resulting system of nonlinear equations equals 6Ng×6Ng which makes difficult
its resolution with the Newton-Raphson method. As a result, (3) proposed to solve this nonlinear
system of equations with a fixed-point iterative method : for a given trial set of the unknowns,
the macroscopic stress Σ and viscoplastic strain Evp are computed from Equations (3) and (6).
Next, for each phase (k), as the average viscoplastic strain in a given phase (k) is a function of
the average stress (Equation (5)) in the same phase, the Ng relations (4) are solved separately
by a Newton-Raphson method. A new set of the average stresses per phases is then obtained.
This iterative procedure stops when the new set of the unknowns is close to the previous one.

This method has proved its efficiency and can be found in other more recent works (see for
example (4)). However, its quadratic convergence is far from being verified.

3.2 Choice of the integration variables

The integration variables are:

• the macroscopic elastic strain Eel.
• the macroscopic viscoplastic strain Evp.
• the average viscoplastic strains εvp(k) of every phases.

The macroscopic equivalent plastic strain P is described as an auxiliary state variable, i.e. is
computed after the computation of the integration variables.

Treating the macroscopic viscoplastic strain Evp as an integration variable may seem awkward at
this stage, as it can obviously also be treated as an auxiliary state variable. The reason for this
choice will become clearer in Section 3.4, where the treatment of the macroscopic viscoplastic
strain Evp as an integration variable will appear as a key point of the proposed implicit scheme.

3.3 Derivation of the standard implicit scheme

Let ~Y be a column-vector grouping all the variables:

~Y =
(
Eel Evp εvp(0) · · · εvp(Ng)

)T
Combining Equations (1), (3), (4) and (5), the evolution of ~Y can be expressed as an ordinary
system of differential equations:
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~̇Y =G
(
~Y
)

For a given time step ∆ t, an implicit scheme consists in replacing this ordinary system of
differential equations by a system of non linear equations which unknowns are the increments of
the integration variables, as follows:

~F
(
∆ ~Y

)
=~0 (7)

where the residual function ~F is given by:

~F
(
∆ ~Y

)
= ∆ ~Y −G

(
~Y
∣∣∣
t+θ∆ t

)
∆ t

In the previous equation, θ is a numerical parameter (θ ∈ [0,1]) and the notation ~Y
∣∣∣
t+θ∆ t

denotes:

~Y
∣∣∣
t+θ∆ t

= ~Y
∣∣∣
t
+θ∆ ~Y

The unknowns of the implicit system are thus the increment of integration variables:

∆Eel,∆Evp,∆εvp(k)

In the following, the residual function ~F is decomposed as follows:

~F =
(
fEel fEvp fεvp(0) · · · fεvp(Ng)

)T
The residuals of the implicit systems are given by:

fEel = ∆Eel + ∆Evp−∆Eto

fEvp = ∆Evp−
Ng∑
k=1

φ(k) ∆εvp(k)

fεvp(k) = ∆εvp(k)−∆ tv(k)
(
σ(k)

∣∣∣
t+θ∆ t

)

The residual system (7) is generally solved by a standard Newton-Raphson method which requires
the computation of the jacobian matrix J = ∂F

∂∆Y
which can also be decomposed by blocks.

Due to the expression of σ(k)
∣∣∣
t+θ∆ t

given by Equation (4), the only not zero jacobian blocks

associated with fεvp(k) are:
∂fεvp(k)

∂∆εvp(k) ,
∂fεvp(k)

∂∆Eel and
∂fεvp(k)

∂∆εvp . In particular,
∂fεvp(k)

∂∆εvp(l) is null if l

is not equal to k.

In the simple case of the simple flow rule described in Equation (5), the expression of those
derivatives are: 

∂fεvp(k)

∂∆εvp(k) = I−∆ t
∂v(k)

∂σ(k) : ∂σ(k)

∂∆εvp(k)

∂fεvp(k)

∂∆Eel =−∆ t
∂v(k)

∂σ(k) : ∂σ(k)

∂∆Eel

∂fεvp(k)

∂∆Evp =−∆ t
∂v(k)

∂σ(k) : ∂σ(k)

∂∆ Evp
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Those expressions show that the jacobian block
∂fεvp(k)

∂∆εvp(k) is always invertible for sufficiently

small time steps.

At this stage, it must be emphasised that a direct application of this standard Newton-Raphson
method would lead to a huge jacobian matrix which would be inefficient in practice, or even
untractable for a high number of grains. Hence, the next paragraph is dedicated to a modification
of this standard Newton-Raphson scheme which overcomes this issue.

3.4 Static condensation

The Newton correction δ∆εvp(k) to the increment of the current estimate of viscoplastic strain
increment ∆εvp(k) satisfies:

∂fεvp(k)

∂∆εvp(k) : δ∆εvp(k) +
∂fεvp(k)

∂∆Eel : δ∆Eel +
∂fεvp(k)

∂∆Evp : δ∆Evp =−fεvp(k)

Hence, the Newton correction δ∆εvp(k) can be expressed as:

δ∆εvp(k) =−
(
∂fεvp(k)

∂∆εvp(k)

)−1

:
(
∂fεvp(k)

∂∆Eel : δ∆Eel +
∂fεvp(k)

∂∆Evp : δ∆Evp +fεvp(k)

)
(8)

To simplify the notations, let us introduce the following fourth-order tensors:

A(k) =
(
∂fεvp(k)

∂∆εvp(k)

)−1

:
∂fεvp(k)

∂∆Eel and B(k) =
(
∂fεvp(k)

∂∆εvp(k)

)−1

:
∂fεvp(k)

∂∆Evp ,

and the following second-order tensor C(k) =
(
∂fεvp(k)

∂∆εvp(k)

)−1

: fεvp(k) .

With those tensors, Equation (8) may be rewritten as follows:

δ∆εvp(k) =−A(k) : δ∆Eel−B(k) : δ∆Evp−C(k) (9)

Equation (9) can be injected in the equation giving the Newton correction of the increment of
the macroscopic viscoplastic strain:

δ∆Evp−
Ng∑
k=1

φ(k) δ∆εvp(k) =−fEvp

I+
Ng∑
k=1

φ(k) B(k)

 : δ∆Evp +
Ng∑
k=1

φ(k) A(k) : δ∆Eel =−fEvp−
Ng∑
k=1

φ(k) C(k)

The correction of the increment of the macroscopic variables satisfies the following condensed
system: (

I I
J(c)
Eel J(c)

Evp

)
·
(
δ∆Eel

δ∆Evp

)
=−

 f
Eel(k)

fEvp(k) +
∑Ng

k=1 φ
(k)C(k)

 (10)

where the following condensed tensors have been introduced:

J(c)
Eel =

Ng∑
k=1

φ(k) A(k) and J(c)
Evp = I+

Ng∑
k=1

φ(k) B(k).

Of course, Linear System (10) may be further condensed to make only appear the correction to
increment the macroscopic elastic strain.
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3.5 Resolution algorithm

Finally, the local resolution algorithm can be summarized as follows:

1. Given an estimation of the ∆Eel, ∆Evp

2. If the iteration number if greater than 1, loop over the phases
a. Update ∆εvp(k) using Equation (9).

3. Compute f
Eel(k)

4. Loop over the phases and:
a. Compute the local stress σ(k)

b. Compute A(k), B(k), C(k),
c. Update J(c)

Eel , J(c)
Evp and f (c)

Evp(k)

5. Solve Linear System (10).
6. Update ∆Eel, ∆Evp

7. Repeat until convergence

3.6 Computation of the consistent tangent operator

As detailled in (6), the consistent tangent operator can be deduced from the 6 × 6 left upper
part of the invert of the condensed jacobian matrix appearing Equation (10).

4 Some numerical results
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Figure 1: Comparison of the results of the implicit and explicit implementations respectively for
a simple uniaxial tensile test

The implicit scheme described in Section 3 has been implemented using the MFront code generator
(7). An implementation using an explicit integration scheme is also available2.

Figure 1 compares the results of the implicit and explicit implementations for a simple uniaxial
tensile test with an imposed total strain rate using the MTest solver delivered with MFront,
showing very good agreement between the two integration schemes.

2The explicit implementation is fully described on this page: https://thelfer.github.io/tfel/web/ExplicitBerveil
lerZaouiPolyCrystals.html
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The local Newton-Raphson appears to converge quadratically which shows that the condensed
jacobian matrix appearing in Equation (10) is correctly computed.

The equilibrium equations also exhibit a quadratic convergence showing that the consistent
tangent operator is also correctly computed. This has been confirmed by comparing this operation
to a numerical approximation.

5 Conclusions
This paper proposed an implicit scheme for polycrystals obtained by a standard homogeneization
scheme, which is, to the best of our knowledge original and may be of significant importance for
the use of such homogeneized behaviours in structural applications.

This implicit scheme will be extended in a straightforward manner to more complex behaviours
and other well-known homogeneization schemes, including Taylor-Lin, Kröner, Cailletaud-Pilvin
(β-model), and extensions. Improved self-consistent approaches will also be considered.

The support of complex constitutive laws requires developments in the core of the MFront code
generator to separate the constitutive equations associated with each phases in a dedicated file
and will allow:

• The creation of a dedicated brick3.
• The parallelisation of the integration of each constitutive equations which may significantly

improve the performance of the proposed scheme.
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