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Résumé — We present a theoretical and experimental analysis of a new nonlinear semi-passive piezoe-
lectric shunt absorber designed to attenuate the vibrations of an elastic structure under external excitation.
This absorber is formed by connecting the elastic structure via a piezoelectric patch to an electrical shunt
circuit consisting of a resonant shunt combined in series with a quadratic voltage component. By sui-
tably tuning the shunt’s natural frequency, a two-to-one internal resonance occurs, creating a nonlinear
antiresonance associated with amplitude saturation that leads to a high attenuation level.
Mots clés — Nonlinear vibration, 2 :1 Internal resonance, Piezoelectric shunt absorber, Saturation phe-
nomenon, Nonlinear antiresonance.

1 Introduction

Piezoelectric shunt absorbers consist of using a piezoelectric transducer to convert the mechanical
energy of the host structure into electrical energy in an electronic shunt circuit to dissipate it and/or to
counteract the structure’s vibrations. Utilizing a dedicated shunt circuit to damp the vibration of a host
structure has been firstly proposed in [1] and then many studies have been established to enhance the
shunt circuits’ performance [2]. Such shunt circuits are passive in their behavior such that the sensing
and actuating are served by the piezoelectric transducer. This suggests that they are unconditionally stable
in contrary to the active control strategies.
The simplest architectures of electric shunts, as shown in Figure 1 are the resistive shunts (R-shunts) and
the resonant shunts (RL-shunts), which are linear in their behavior.
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FIGURE 1 – Schematic of the resistive shunts (R-shunts) and resonant shunts (RL-shunts)

The R-shunt attenuates the vibrations by dissipating energy in the form of Joule heat. However, with
the RL-shunts, an RLC resonant circuit is coupled to a given mode of the structure to attenuate the vi-
bration level by suitable tuning of the resistor and inductor values. Based on the shunt’s behavior, the
R-shunts and the RL-shunts are, respectively, the mechanical analogs of the classical Lanchester and
Frahm dampers. However, the main advantages in using the electrical analogs rely on the easiness to set
and control in many applications.
A nonlinear component can be added to the shunt circuit leading to a nonlinear absorber that exploits
some particular features that have no counterpart in the linear theory. Such nonlinear absorbers are firstly
analyzed by mechanical dampers and then transposed to the electromechanical analogs. An interesting
example is the nonlinear energy sink (NES), proposed in [3]. It consists of attaching to a primary linear
structure an essentially nonlinear oscillator into which the vibratory energy is transferred and localized.
The extension of the mechanical NES to piezoelectric devices has been theoretically proposed in [4] and
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realized with analog circuitry (using multipliers) in [5].
Another feature of the nonlinear absorber is the internal resonance, which occurs when the modal fre-
quencies are commensurable (i.e qωq ≈ pω j with p,q ∈ N∗). Consequently, a strong coupling between
the two corresponding modes occurs, leading to an energy transfer between the modes. A particular type
is the two-to-one (2 :1) internal resonance (i.e., ω2 ≈ 2ω1) in which the energy is transferred from the
driven mode (near ω2) to a mode tuned at half this frequency (near ω1). This leads to two important
features [6] : (i) amplitude reduction of the driven mode, where a nonlinear antiresonance replaces the
primary resonance, and (ii) a saturation phenomenon that leads to an amplitude of the driven mode in-
dependent of the excitation level. Such feature has been exploited to attenuate the vibrations in an active
control strategy as done in [7].
The main originality of our work is to use the particular features of a 2 :1 internal resonance in a semi-
passive way using a piezoelectric shunt circuit. In this abstract, we present the theoretical modeling of
the absorber with the main analytical and numerical results. In addition, we show some experimental
results by connecting the designed absorber to a cantilever beam structure. A complete theoretical and
experimental study are illustrated, respectively, in [8] and [9].

2 Theoretical modeling

2.1 Main equations

In this section, a summary of the main equations that govern the electromechanical system is illus-
trated. We consider an arbitrary elastic structure subjected to an external excitation and connected to a
nonlinear shunt circuit via a piezoelectric (PE) patch as shown in Figure 2.
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FIGURE 2 – Nonlinear shunt schematic

The displacement vector u(x, t) at any point x of the structure at time t is expanded on a given linear
modes ϕi(x) of the structure in short circuit. One obtains :

u(x, t) = ϕi(x)qi(t), (1)

where qi(t) is the i-th modal coordinate that verifies [8] :

q̈i +2ξiω̂iq̇i + ω̂
2
i qi +

θi

miCpi
Q =

Fi

mi
cosΩt, (2a)

Q̈+2ξeωeQ̇+ω
2
eQ+

θi

LCpi
qi +

Vnl

L
= 0. (2b)

In the above equations, Q(t) is the electric charge in one of the electrodes of the PE patch and (mi, ξi, ω̂i,
Fi, θi) are respectively the modal mass, damping, natural frequency in open circuit (Q = 0), forcing and
piezoelectric coupling coefficient of the i-th mode. Cpi is the effective capacitance of the piezoelectric
patch [10], and the electrical natural frequency and damping factor are defined by :

ωe =
1√
LCpi

, ξe =
R
2

√
Cpi

L
, (3)

where (R,L) are, respectively, the resistance and the inductance of the electric circuit. Vnl(t) represents
the nonlinear voltage source added to the shunt circuit, that is chosen to include quadratic nonlinearities
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to activate the 2 :1 internal resonance. In this study, Vnl(t) is taken to be proportional to the square of the
voltage V (t) across the piezoelectric patch, by a constant gain β, as shown in Figure 2. One has thus :

Vnl = βV 2, V =
1

Cpi
(Q+θiqi) , (4)

where the second equation is the classical constitutive law of the PE patch [8]. We also define the dimen-
sionless electromechanical modal coupling factor (EMMCF) of the i-th mode as :

k2
i =

ω̂2
i − ω̌2

i

ω̂2
i

=
θ2

i

ω̂2
i Cpimi

, (5)

with ω̌i the natural frequency in short circuit (V = 0). The system in (2a, b) is linearly coupled through
the piezoelectric coupling. To diagonalize the latter system, we further expand it on a basis of two elec-
tromechanical modes. This expansion reads :

(
qi(t)
Q(t)

)
=

 1√
m

[
− εx1(t)+ x2(t)

]
1√
L

[
x1(t)+ εx2(t)

]  . (6)

where
ε =

2kiri

1− r2
i +

√
∆
, (7)

with ∆ = (1− r2
i )

2 +4k2
i r2

i and ri = ωe/ω̂i . Note that ε is small due to the weak piezoelectric coupling
(ki < 0.2). The unknowns x1(t) and x2(t) are the solution of the following system :

ẍ1 +2µ1ẋ1 +ω
2
1x1 +Λ1x2

1 +Λ2x1x2 +Λ3x2
2 = f1 cosΩt, (8a)

ẍ2 +2µ2ẋ2 +ω
2
2x2 +Λ4x2

1 +Λ5x1x2 +Λ6x2
2 = f2 cosΩt. (8b)

The expressions of the damping terms µ1 and µ2, the nonlinear coefficients Λk, and the modal forcing
terms f1 and f2 are given in [8]. This last system (8a,b) is at the basis of the theoretical analysis of [8]
since it is the canonical system to study the 2 :1 internal resonance and its dynamical effects (nonlinear
antiresonance and saturation phenomenon), as recalled in the following.

2.2 Typical response and saturation phenomenon

To illustrate the features of the 2 :1 internal resonance, we present the solution of (8a,b) to the first
order with ω2 ≈ 2ω1 which reads [6] :

x1(t) = a1 cos
(

Ω

2
t − γ1 + γ2

2

)
, x2(t) = a2 cos(Ωt − γ2) , (9)

where a1 and a2 are the amplitudes, γ2 is the phase angle of x2(t), and γ1 represents the relative phase
angle between x1(t) and x2(t). The closed-form expressions of the amplitudes and phase angles (obtained
with a first-order multiple scale method, MSM). The typical response is illustrated in Figure 3. It shows
the response of amplitudes a1 and a2 with respect to the detuning σ1 = Ω̄−ω2 for different excitation
levels. This typical response is done by neglecting the nonresonant terms (i.e., Λ1 = Λ3 = Λ5 = Λ6 = 0).
One can observe three main features :

— Figure 3(a) shows that when the linear response enters an instability region (shaded in blue),
energy transfer to the low-frequency mode occurs, leading to the activation of a1. Consequently,
an antiresonance appears that replaces the primary resonance.

— Figure 3(b) focuses on the amplitude at the resonance frequency (a∗1 and a∗2). It shows that after a
threshold forcing, a∗2 becomes independent from the excitation level (i.e. saturation phenomenon)
and a∗1 keeps increasing.

— Figure 3(c) shows that γ1 is locked at 3π/2 at the antiresonance frequency. This feature is impor-
tant in further analysis.

3



a1

a2

γ1

γ2

threshold forcing

a∗1

Saturation Amplitude a∗2

(a) (c)

(b)

FIGURE 3 – Typical response of the amplitudes a1 and a2 and the phases γ1 and γ2, stemming from the
first order multiple solution of system (8a,b), for ω2 = 2ω1. The numerical values are Λ2 = Λ4 = 0.1,
µ1 = 0.005 , µ1 = 0.01. (a) and (b) show respectively the amplitude and phase response with respect
to the detuning σ1 for values of the forcing f2 ( f2 ∈ {0.005;0.03;0.05}). (c) amplitude response at the
resonance frequency (σ1 = 0) with respect to the excitation level f2. In the plots, the linear responses of
a2 and γ2 are plotted in black. The solid and the dashed-dotted lines denote respectively the stable and
the unstable solutions.

To link the features shown in Figure 3 to the physical response, the displacement u(t) and the charge
Q(t) can be expressed, using (6), as :

u(t) =
Φi√
mi

[
− εa1 cos

(
Ω

2
t − γ1 + γ2

2

)
︸ ︷︷ ︸

x1(t)

+a2 cos(Ωt − γ2)︸ ︷︷ ︸
x2(t)

]
, (10a)
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1√
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a1 cos
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2
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2

)
︸ ︷︷ ︸

x1(t)

+εa2 cos(Ωt − γ2)︸ ︷︷ ︸
x2(t)

]
. (10b)

Consequently, u(t) and Q(t) are mainly composed of two harmonics, at Ω/2 ( harmonic H1/2) and at Ω

(harmonic H1). Because of the small value of ε, the leading harmonics in the response of u(t) and Q(t)
are, respectively, H1 and H1/2. Moreover, since there is a frequency splitting in the expression of u(t),
the saturation phenomenon seen in the response of x2(t) is equally observed in the H1 harmonic response
of the displacement.

2.3 Effect of the nonresonant terms and correction of the antiresonance

The first-order multiple scale solution shown in Figure 3 neglects the effects of the nonresonant
terms. However, as shown in [8], one of those terms, namely Λ1, admits a very large value compared to
the resonant terms Λ2 and Λ4. This leads to an unusual and major effect that quantitatively modifies the
ideal response of Figure 3. This is illustrated in Figure 4 in which a numerical solution of (2a,b), obtained
with the continuation software Manlab [11], is shown. The modal parameters used to obtain the numerical
solution are estimated experimentally and gathered in Table 1 which correspond to the cantilever beam
structure shown in Figure 6, with the displacement u(t) considered at the beam tip (u(t) = qi(t) with a
mode shape scaled to 1). One can observe that the resonance frequency ω̃1 (for β = 0) is slightly higher
that the open circuit frequency ω̂1 due to the PE coupling.
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FIGURE 4 – Frequency response of the beam tip displacement first harmonic uH1 amplitude, the charge
QH1/2 subharmonic and the phase γ1, obtained by solving system (2a,b) using Manlab for several excita-
tion levels. The numerical values are β = 0.012, ri = 0.52, and ξe = 0.002. The linear response is plotted
in black. The solid and dotted lines denote, respectively, the stable and the unstable solutions.

By observing the physical response of the amplitudes corresponding to the H1 and H1/2 harmonics
of the displacement and charge (uH1 and QH/12), shown in Figure 4, and by comparison with the typical
response illustrated in Figure 3, the effect of the nonresonant terms can be inferred [8] :

— the antiresonance shifts to low frequencies with increasing excitation level, violating the satura-
tion phenomenon ;

— although the antiresonance is shifting, its amplitude remains constant at a saturation amplitude
u∗H1, which is the same as a∗2 analytically obtained with the MSM;

— the phase angle γ1 is kept locked at 3π/2 at the antiresonance point ;
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FIGURE 5 – (a) Frequency response of the first harmonic amplitude of the beam tip displacement uH1,
estimated by solving system (2a,b) using Manlab, for several excitation levels and with AR correction.
(b) First harmonic amplitude of the beam tip displacement at the resonance frequency u∗H1 with respect to
the excitation level, with and without AR correction. The plots are done for β = 0.012. The displacement
linear response is plotted in black. The solid and dotted/dashed lines denote, respectively, the stable and
unstable solutions. QP refers to a quasi-periodic response.

The main aim of this work is to exploit the saturation phenomenon, which is violated due to the ef-
fect of the nonresonant terms. To correct this, we proposed an antiresonance correction (AR correction)
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TABLE 1 – Electro-mechanical modal parameters of the first bending mode of the cantilever beam (sub-
script i = 1).

Parameters ω̌i/(2π) [Hz] ω̂1/(2π) [Hz] ξ1(%) k1 θ1[mN/V] m1[g] Cp1 [nF]
Value 36.6 37.51 0.5 0.20 0.8 8.8 32.45

technique, that consists in locking the antiresonance by choosing the proper value of the ratio ri for each
excitation level to counter-balance the shifting observed in Figure 4. As shown in detail in [8], this can
be simulated by a numerical continuation of the system (2a,b) using Manlab, to obtain the amplitude of
uH1 as a function of ri for a certain excitation level and with a prescribed driving frequency equal to the
resonance frequency shown in Figure 4 (ω̃1 = 37.7 Hz). Then, the value of ri where uH1 achieves its
minimum value is the required value to lock the antiresonance at the resonance frequency.
Following the AR correction, the response of uH1 shown in Figure 4 is replaced by the one shown in Fi-
gure 5(a) where it clearly shows that the antiresonance is locked at ω̃1. One can note the appearance of a
quasi-periodic solution (QP) for F = 0.57mN. Also, Figure 5(b) shows the amplitude of u∗H1 with respect
to the excitation level, where one can observe that the proposed AR correction preserves the saturation
phenomenon.

3 Experimental Analysis

3.1 Structure under test
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FIGURE 6 – Experimental setup. Dimensions are in mm. The width of the beam and PE patches is
30.5 mm.

The experimental tests were conducted on a cantilever beam with two PIC 151 piezoelectric (PE)
patches symmetrically glued on the two faces of a stainless steel beam, as shown in Figure 6. The
nonlinear shunt circuit is connected to the structure with the PE patches in series and with opposite
polarizations to couple the electrical shunt circuit to the bending of the beam. A contactless electroma-
gnetic actuator composed of a fixed coil and a magnet attached to the structure tip is used to generate an
electromagnetic force by inducing a current in the coil.

3.2 Experimental results

The two main experimental quantities that have been measured are the beam tip velocity v(t) and
the PE patch voltage V (t) using a laser vibrometer and a voltage probe, respectively. To validate the
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energy transfer, only the amplitudes of the fundamental harmonic of the velocity (vH1) and the first
subharmonic amplitude of the voltage (VH1/2) are estimated. To have the frequency response of the
harmonics, a stepped sine measurement has been performed. Namely, a single harmonic sinusoidal signal
with a certain frequency is amplified and sent to the coil. Then, using a demodulation procedure [9], vH1
and VH1/2 are estimated from the time signals v(t) and V (t). This procedure is repeated for different
excitation frequencies to have the desired frequency response. More details regarding the experimental
protocol and the nonlinear shunt circuit can be found in [9].

ω̃1 ω̃1

FIGURE 7 – Experimental results of vH1 (first row) and VH1/2 (second row) for several excitation levels.
Only the data for sweeping down the excitation frequency are shown in solid lines. The measurements
are done for β = 0.035, ξe = 0.002, and r1 = 0.537. The shaded regions depict the quasi-periodic regime.

The effect of the excitation level on the response is illustrated in Figure 7, where only downward
frequency sweeps are shown. The ratio r1 is also chosen to have ω1/ω2 ≃ 0.5 and activate the internal
resonance to take into account the effect of the piezoelectric coupling. One can realize that increasing
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FIGURE 8 – (a) Experimental frequency response of vH1 for sweeping down the excitation frequency
for several excitation levels with the AR correction. (b) Antiresonance saturation amplitude v∗H1 at the
resonance frequency ω̃1 versus the excitation level plotted for three different cases : the linear response

, with fixed r1 = 0.537 , and with the AR correction in . The curves are estimated for
β = 0.035 and ξe = 0.002.

the excitation amplitude while keeping the other design parameters fixed leads to increased velocity and
PE patch voltage amplitudes. Looking at the antiresonance, one can observe that its amplitude remains
almost constant with the increase of the excitation level but shifts to lower frequencies as the excita-
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tion level increases. This validates the numerical predictions in Figure 4, suggesting a violation of the
saturation phenomenon at a fixed excitation frequency.

Our purpose is to preserve the saturation phenomenon to enhance the absorber’s efficiency. Because
the antiresonance amplitude remains constant, it is sufficient to lock the antiresonance at the resonance
frequency. Experimentally, the AR correction is performed using the preserved feature of γ1 = 3π/2 at
the antiresonance point. Namely, before performing the stepped sine measurements, a sinusoidal signal of
frequency equal to the mechanical resonance frequency ω̃1/(2π) = 37.75 Hz is amplified to the desired
excitation level and then fed to the coil. The required value of ri, which is controlled by the inductance
in the circuit, is the one that locks γ1 at 3π/2. To ensure the lockage value of γ1, the velocity v(t) and
the PE patch voltage V (t) are visualized using an oscilloscope in an XY mode to obtain a Lissajous plot,
which has a unique shape for γ1 = 3π/2. The same process is repeated for each excitation level to have
the required value of the inductance that locks the antiresonance at ω̃1/(2π) = 37.75 Hz. With the AR
correction, the stepped sine measurements are performed again for different excitation levels, and the
response of vH1 shown in Figure 7 is replaced by that shown in Figure 8 where the saturation is almost
preserved with a high attenuation level at the highest excitation.

4 Conclusion

This abstract addresses a theoretical and experimental study for a new semi-passive nonlinear piezoe-
lectric shunt absorber. This absorber is designed by intentionally adding a quadratic nonlinear voltage
source in series with a resonant shunt circuit. This is done to activate the 2 :1 internal resonance and
consequently obtain a nonlinear antiresonance in place of the primary resonance accompanied with an
amplitude saturation. The main drawback of the designed absorber is the unexpected detuning of the
shunt as a function of the amplitude, leading to the loss of the saturation phenomenon. This was ma-
nually corrected by a phase-locking of the PE voltage with the mechanical response of the structure. The
experimental results validated the numerical prediction and showed a high attenuation level at higher ex-
citation levels. An alternative way to preserve the saturation is to introduce an additional cubic nonlinear
component to the shunt circuit, which will be shown in a future study.
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