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Résumé — This contribution overviews a spectral methodology for the numerical solution of partial dif-
ferential equation systems governing various mechanical wave propagation problems. Based on a Fourier
continuation (FC) approach for the accurate trigonometric interpolation of a non-periodic function, such
a high-order algorithm produces solutions with essentially no numerical dispersion ; possesses mild CFL
constraints scaling only linearly with spatial discretization sizes ; and parallelizes efficiently for high-
performance. Applications to non-destructive testing, blood dynamics, and geophysics are discussed.
Mots clés — (pseudo)spectral methods, wave propagation, fluid-structure interactions, non-destructive
testing, hemodynamics, tsunami generation

1 Introduction

Fourier continuation (FC) methods produce highly-accurate Fourier series representations of non-
periodic functions while avoiding the well-known Gibb’s “ringing effect" [13]. Such techniques expand
the applicability of Fourier-based partial differential equation (PDE) solvers towards general (physical)
boundary conditions [6, 8, 9] and computational domains [2, 6]. Corresponding solutions provide Fast
Fourier Transform- (FFT-)speed high-order accuracy and faithfully capture the dispersion or diffusion
characteristics of the underlying continuous problems. A number of both implicit- and explicit-in-time
FC-based solvers have been constructed for a variety of physical equations including those for acoustic
beams [3], light transport [15], compressible fluids [2], incompressible fluids [14] and (shock-inducing)
conservation laws [18].

This work presents on overview of recent developments [5, 6, 7, 8, 9, 10] in certain explicit Fou-
rier continuation-based (pseudo) spectral algorithms (Section 2) that have been motivated by scientific
applications (Section 3) in non-destructive testing (for the study of mode conversions in ultrasonic ex-
periments on elastic plates), seismogenic tsunamis (for the study of the tsunami generation potential
of strike-slip earthquakes), and cardiovascular hemodynamics (for the study of fluid-structure blood
flow waves and their effects on neurodegenerative diseases). Such developments have been driven by
subsequent challenges in the treatment of the corresponding equations that respectively govern (linear)
elastodynamics, (nonlinear) shallow water wave dynamics (coupled to elastic rupture models) and (non-
linear) fluid-structure arterial wave dynamics (coupled to dynamic heart models). In particular, the al-
gorithms presented here extend the class of FC methods to encompass variable-coefficient 3D systems,
general (curved) 3D domains, 3D parallelization, Neumann-like (e.g., traction or convective flux) boun-
dary conditions, and nonlinear/nonstationary (ODE-governed) coupling (e.g., dynamic 0D-coupling).
The resulting high-order solvers enjoy a number of desirable properties for scientific computation : accu-
racy by means of relatively coarse discretizations ; little-to-no numerical dispersion or diffusion errors ;
mild (linear) CFL constraints on time integration ; and efficient parallelization for distributed-memory
high-performance computing.

2 Fourier continuation methods

For point values f (xi) of a given smooth function f (x) : [0,1]→ R defined on a structured uniform
discretization xi = i∆x, i = 0, . . . ,N − 1, ∆x = 1/(N − 1), the FC method constructs a fast-converging

1



interpolating trigonometric polynomial (Fourier series representation) fcont : [0,b]→R on a region [0,b]
that is slightly larger than the original physical domain od definition [0,1] :

fcont =
M

∑
k=−M

ake
2πikx

b s.t. fcont(xi) = f (xi), i = 0, ...,N−1, (1)

where M = (N +Ncont)/2 is a bandwidth parameter for a number of points Ncont added to the original
domain (such that b = (N +Ncont)∆x)). The FC function fcont renders the original function f discretely
periodic, i.e., fcont approximates f to high-order in the original domain [0,1] and is approximately perio-
dic on the slightly larger domain [0,b], b > 1. Spatial derivatives of a PDE can then be produced by exact
termwise differentiation of this series as

∂ fcont

∂x
(x) =

M

∑
k=−M

(
2πik

b

)
ake

2πikx
b . (2)

This ultimately provides the numerical derivatives of f to high-order by restricting the domain of ∂ fcont/∂x
to the original unit interval. Hence the approximation rests in the construction of (1) from which the com-
putation of the derivative (2) can be facilitated by the Fast Fourier Transform (FFT). Note here that f has
been defined on [0,1] without loss of generality.

2.1 Accelerated Fourier continuation : FC(Gram)

The coefficients ak of (1) are found in the most intuitive treatment [12] via the solution to the least
squares problem given by

min
ak

N−1

∑
i=0
| fcont(xi)− f (xi)|2 (3)

by the Singular Value Decomposition (SVD). This can become rather costly for 3D problems as well as
time-dependent solutions of complex boundary-valued PDEs (where each spatial dimension requires ap-
plication of SVDs at each timestep). An accelerated method [2, 6], known as FC(Gram), can circumvent
such expense by employing small vectors of only a handful of function values near the left and right
endpoints at x = 0 and x = 1 which can then be projected onto a Gram polynomial basis (whose conti-
nuations are precomputed through solving the corresponding least squares problem (3) by high-precision
SVD). That is, one utilizes a subset of the given function values on small numbers d` and dr of matching
points {x0, ..,xd`−1} and {xN−dr , ...,xN−1} contained in small subintervals on the left and right ends of
the interval [0,1] to produce a discrete periodic extension of size Ncont. This is accomplished by pro-
jecting these end values onto a Gram basis up to degree d`− 1 (or dr− 1) of polynomials (producing a
polynomial interpolant) whose FC extensions are precomputed and whose orthogonality is enforced by
the natural discrete scalar product defined by the discretization points. This effectively forms a “basis"
of continuation functions with which to quickly and accurately extend the given function f to provide a
smooth transition from f (x = 0) back to f (x = 1) over the interval [0,b].

Defining the vectors of matching points for the left and right as

f` = ( f (x0), f (x1), ..., f (xd`−1))
T , fr = ( f (xN−dr), f (xN−dr+1), ..., f (xN−1))

T , (4)

the continuation operation can be expressed in a block matrix form as

fcont =

[
f

A`QT
` f`+ArQT

r fr

]
, (5)

where f = ( f (x0), . . . , f (xN−1))
T is a column vector containing the discrete point values of f ; fcont is a

vector of the N +Ncont continued function values ; I is the N×N identity matrix ; and A`,Ar contain the
corresponding Ncont values that perform the continuation from the left and the right (such that the sum of
leftward and rightward continuations provides the necessary smooth transition). The columns of Q`, Qr

contain the d`,dr point values of each element of the corresponding Gram polynomial basis (produced
from a QR decomposition of a Vandermonde matrix), and can be modified [6, 10] to match derivatives
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at endpoints (e.g., f` = ( f (x0), f (x1), ..., f (d`−1),∂ f/∂x(xd`))
T ) for Neumann boundary conditions. Fi-

gure 1 illustrates an example Fourier continuation of a non-periodic function. The resulting continued
vector fcont can be interpreted as a set of discrete values of a smooth and periodic function that can be
approximated to high-order via FFT on an interval of size (N+Ncont)∆x. For the solvers [5, 6, 7, 8, 9, 10]
reviewed in this work, Ncont = 25 and d`,dr = 5 at physical boundaries.

FIGURE 1 – An example Fourier continuation from [8] of a non-periodic function. The original function
on [0,1] is translated by a distance of length Ncont∆x whose values are filled-in by the sum of “blend-to-
zero" continuations (dashed lines) in order to render the function periodic. Triangles and circles represent
the discrete d`,dr = 5 matching points, and squares represent the discrete Ncont = 25 continuation points
that comprise the extension.

2.2 Curved geometries & parallel domain decompositions

For general physical domains, realistic curved geometries can be treated by an overset method de-
composing the computational domain Ω into a union Ω =

⋃
j Ω j of a finite number of overlapping,

boundary-conforming patches which are endowed with uniform Cartesian-like discretizations within
each one of which a curvilinear formulation of the PDE of interest is evolved [6]. Additionally, a de-
composition of each curvilinear patch Ω j into mutually disjoint subpatches enables a parallelization
for distributed-memory environments through which some solvers have achieved nearly perfect scalabi-
lity [4, 6]. For each (sub)patch, the governing equations must be solved in a curvilinear form, which can
be obtained by considering the chain rule expression

∇q = [Jx(q)]T ∇x, (6)

where (Jx(q))i j = ∂xi/∂q j is the Jacobian matrix of the given mapping x(q). Provided det((Jx)(q)) does
not vanish, inversion of this linear system gives the expression

∇x =
[
(Jx(q))−1

]T
∇q = [Jq(x)]T ∇q, (7)

where the last equality results from the reverse chain rule formula ∇x = [Jq(x)]T ∇q. Thus the derivatives
∂qi/∂x j can be produced in terms of the derivatives of the given mapping ∂xi/∂q j (computed analytically,
if known, or via a seperate application of FC). Absorbing boundary conditions can also be constructed
from such overset curvilinear strategies [4].

2.3 High-order time integration

FC-based solvers can be completed by any suitable time integration scheme. Those presented in Sec-
tion 3 employ explicit timestepping via fourth-order Adams-Bashforth methods, yielding mild, linearly
scaling CFL constraints on the time discretization [5, 6, 8, 9]. Such high-order timestepping has proven to
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be particularly useful for coupling with 0D ordinary differential equation- (ODE-)based boundary condi-
tions (such as with the heart models of [8, 9, 17]). Other explicit timesteppers can be used, including the
fourth-order Runge-Kutta (RK4) method. Both methods provide adequate regions of absolute stability,
but each timestep for RK4 entails four evaluations of the right-hand-side (which can be burdensome for
3D calculations), and enforcement of boundary conditions at intermediate RK steps may be problematic
(especially for time-dependent boundary conditions).

3 Scientific applications

The following examples demonstrate the efficacy of FC-based numerical algorithms in constructing
physically-faithful and high-fidelity simulated solutions for problems in solids (elastodynamics), fluids
(shallow water wave dynamics) and their interactions (cardiovascular hemodynamics). Such solvers have
been validated against data ranging from on the order of seconds (coarse, natural data of tsunami wave
observations) to on the order of microseconds (finely-controlled experimental data of ultrasonic non-
destructive testing experiments).

3.1 Non-destructive testing

Ultrasonic NDT is a powerful tool to study the integrity of a variety of plate-like and beam-like
structures from aircraft wings to oil pipelines to bridges. Low-energy, high-frequency wave packets are
introduced into a material to determine fundamental properties (e.g., elastic constants) or to detect defects
(e.g., cracks or holes) by measuring and analyzing the propagation, reflection and attenuation of incident
pulses. These pulses are excited by a certain combination of pressure and shear wave modes to enable
propagation of a single guided wave. Subsequent wave dynamics and scattering patterns can then be used
to extract important features—such as the positions, dimensions and orientations of defects—by solving
the corresponding direct or inverse problems.

The dynamics of ultrasonic (1Mhz to 10Mhz) vibrations excited in such structures can be modeled
as elastic waves in a linear, isotropic, possibly heterogeneous 3D medium, which are governed by the
PDE system

ρ(x)
∂2u
∂t2 (x, t) = ∇ ·

[
µ(x)

(
∇u(x, t)+∇uT (x, t)

)
+λ(x)(∇ ·u(x, t)) I

]
+ f(x, t), x ∈Ω⊂ R3, t ≥ t0 (8)

for a general 3D domain Ω ∈ R3 ; position x and time-dependent displacement u(x, t) ; body force vec-
tor f(x, t) ; and spatially-varying material properties specified by Lamé parameters µ(x),λ(x) and density
ρ(x). In an effort to model certain ultrasonic NDT experiments on thin aluminum plates with holes (where
a pulsed TV-holography system records the 2D acoustic field of the instantaneous out-of-plane displace-
ment over the surface [16]), an FC-based solver for (8) with traction- (surface-)free boundary conditions
on the plate and in the holes (left images of Figure 2) has been recently introduced [6]. The high-order
solver invokes curvilinear transformations, overset grid decompositions and high-performance paralle-
lization (up to 512 processing cores). The resulting speed, accuracy and limited numerical dispersion
resolves the high-frequency and transient incident pulses of the experimental configuration in reasonable
computational times, ultimately providing a systematic quantitative comparison between numerically
simulated maps and filtered experimental displacement maps [7]. Results demonstrate very good agree-
ment both in amplitude and phase, including the backscattering zone, which confirms the feasibility and
potential of the proposed numerical method for the characterization of experimental transient scatte-
ring patterns measured with the pulsed TV-holography technique. The pixel-wise L2 errors in the colored
boxes of Figure 2 fall within 10% error in both amplitude and phase—indicating a “perfect" match within
experimental uncertainty [7]. FC simulations have additionally given a first-time look inside defect holes
via numerical analysis of all three displacement components (two of which are unobservable with the
experimental setup). This has provided insight into a mode conversion during interaction in the thickness
of the hole that is not captured by simplified (e.g., time-harmonic and scalar [16]) models.
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FIGURE 2 – Left to right : a photo of a physical NDT sample and its corresponding 3D overset computa-
tional domain from [6] ; temporal snapshots of normalized experimental and FC-simulated displacement
fields from [7], simulated on 512 processing cores.

3.2 Seismogenic tsunamis

A magnitude 7.5 earthquake struck Sulawesi, Indonesia in 2018 and triggered disastrous conse-
quences in which hundreds were killed and thousands more displaced. In particular, a devastating tsunami
was generated in the nearby Palu bay—an unexpected event due to the predominantly in-plane ground
motion produced by strike-slip ruptures such as this earthquake. These motions are not known to excite
significant waves (as opposed to large final vertical displacements in subduction zones), and hence the
underlying mechanisms behind this tsunami continue to be debated. However, a key notable feature of
this earthquake is that it ruptured at supershear speed, i.e., with a rupture velocity greater than the shear
wave speed of the host medium. Such supershear ruptures produce two shock fronts (or Mach fronts) that
correspond to an exceedance of shear and Rayleigh wave velocities and that carry with them significant
and minimally attenuated particle velocities to large distances.

Since tsunamis are conventionally known to occur from large vertical (final, static) displacements,
most tsunami solvers treat equations with static bathymetry (topography). In order to understand the
effects of supershear earthquake dynamics and to enable sourcing using time-dependent displacement
as well as velocity of the ground motion, one can consider a nonlinear version of the (non-dispersive)
depth-averaged Euler equations (known as shallow wave equations) incorporating ground dynamics, i.e.,

∂H

∂t
+∇ · (Hu) = 0,

∂Hu
∂t

+∇ ·

(
Hu⊗u+

1

2
gH2

)
= gH∇h,

H = h(x, t)+η(x, t), x ∈Ω⊂ R2, t ≥ t0 (9)

for depth-averaged velocity u = u(x, t), total column height H = H(x, t), tsunami height η(x, t) from the
free surface, bathymetry (ocean floor topography) h(x, t) and gravitational constant g.

This nonlinear formulation includes time-dependent changes to the vertical ocean floor displacement
h(x, t) and, in particular, its vertical velocity ∂h/∂t (displacement h may be small, but ∂h/∂t can be large).
The ground motion source is generated by a 3D supershear rupture model (using a staggered-grid finite
difference method) that agrees with GPS records recorded at a station near the fault. This can be subse-
quently coupled with a new high-order FC-based dispersionless solver for (9) [5] that can take rapidly
varying topography into account without worrying about the discretization details and that is stable when
used with the (given) discretization of the dynamic rupture model. This has enabled adequate resolution
of the different spatial and temporal scales involved between the supershear source dynamics (on the
order of milliseconds) and the corresponding tsunami dynamics (observed on the order of seconds). Re-
markably, the simulated tsunami using the FC-based dispersionless numerical model captures the tsunami
arrival and the primary dynamics that are given by water heights observed every second from waveforms
generated by carefully-calibrated CCTV camera analysis at the Pantoloan tidal station (Figure 3). This
is a newly discoverd mechanism/configuration of tsunami-genesis and suggests that consideration of the
speed of an earthquake may also be important for rapid tsunami hazard assessment [5].
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FIGURE 3 – A comparison from [5] of normalized tsunami heights as predicted by FC-based numerical
simulations (sourced by vertical ground motion) with those observed by video analysis of CCTV camera
records at the Pantoloan station.

3.3 Cardiovascular hemodynamics

Modeling of blood flow in the aortic system is a complex fluid-structure interaction (FSI) problem
that is important to resolve in order to develop a better understanding of the underlying mechanisms
of cardiovascular diseases such as aneurysms and heart failure. It is also an essential tool in the design
and performance evaluation of cardiovascular devices such as artificial heart valves, stents and grafts.
The pulsatile flow that is generated in the heart can be modeled as pressure and flow waves as it enters
the (compliant) aorta and reflects through vasculature due to vessel tapering (thinning), bifurcations and
variations in arterial wall elastic material properties. These multiphysical dynamics can be studied to
provide assessment of cardiac health.

In order to simulate the complete circulation with, in particular, the different material properties en-
countered in various vascular segments, it is necessary to adopt a nonlinear and physiologically-relevant
fluid-structure model. For cross-sectional area A = A(x, t) and mean velocity over the cross-section
U = U(x, t) (yielding the flow rate as Q = AU), such a model can be expressed as a reduced-order
nonlinear system for each segment as

∂A
∂t

(x, t)

∂U
∂t

(x, t)

=−


∂(AU)

∂x
(x, t)

U
∂U
∂x

(x, t)+
1
ρ

∂P
∂x

(x, t)+
2(ζ+2)µπU(x, t)

ρA(x, t)

 , (10)

where ρ is a (constant) blood density, µ is a (constant) blood viscosity and ζ is a given constant of an
assumed axisymmetric velocity profile. The system is closed by an assumed nonlinear elastic tube law
that accounts for the fluid-structure interaction and is given by the constitutive law

P(x, t)−Pext = Pd +
β

Ad

(√
A(x, t)−

√
Ad

)
, β(x) =

4
3
√

πE(x)h(x), (11)

where Pext(x) is the external pressure, Pd(x) is the diastolic pressure, Ad(x) is the diastolic area, and β(x)
is an expression of the arterial wall material properties in terms of elastic modulus E(x) (a measure of
stiffness) and wall thickness h(x). In order to simulate multiple vessels, including vascular bifurcations or
trifurcations, it is necessary to treat the fractal structure of the circulation network and, namely, branching
points. These junctions effectively act as mathematical discontinuities in cross-sectional area and material
properties. Physically, one must enforce a continuity of total pressure and a conservation of mass at each
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junction point. For example, given a parent vessel p that splits into two daughter vessels d, i = 1,2, the
corresponding mathematical conditions are given by

Pp +
ρ

2
U2

p = Pd,i +
ρ

2
Ud,i, i = 1,2 and ApUp +Ad,1Ud,1 +Ad,2Ud,2 = 0. (12)

Numerically, these equations are implemented through the solution of a corresponding Riemann invariant
problem that enforces compatibility of propagating characteristics and provides the final three equations
given by

w1p =Up +4A1/4
p

√
βp

2ρ
and w2d,i =Ud,i−4A1/4

2d,i

√
βd,i

2ρ
, i = 1,2, (13)

where w1p represents the outgoing characteristic from the parent vessel and w2d,i the outgoing charac-
teristic from the daughter vessels (A and U can both be represented at the boundary in terms of both
incoming and outgoing characteristics). The inlet and outlet boundary conditions for the aorta and ter-
minal vessels, respectively, create highly nonlinear and nonstationary systems as they are governed by
dynamic ODEs representing the heart and truncated vasculature [8, 9].

The FC-based solver (which has been extensively benchmarked [9] against those problems proposed
in [11]) quickly resolves many-cycle cardiac simulations and clinical metrics with greater speed and
accuracy [8, 9] than commonly used finite difference, finite volume and discontinuous Galerkin finite
element methods (left Figure 4). Using these types of reduced-order models, it has been demonstrated [1]
that a possible mechanical link exists between aortic arch stiffening of the elastic wall (which can be
offset due to aging, smoking or diseases like type-2 diabetes) and excessive energy transmission to the
brain (a possible indicator of dementia and Alzheimer’s). An example of the pressure at the midpoint of
the right common carotid artery (which goes towards the brain) is given in Figure 4 (right) and produced
by a simulation of 77 segments of the human circulation [9]. In order to investigate such links fully,
the FC-based solvers with dynamic heart models [8, 9] are necessary in order to study the effects of
various heart conditions and properties (such as left ventricle contractility [9]). Recent efforts [1] have
involved investigating whether certain “optimum wave conditions" exist in the cardiovascular system
where harmful effects may be minimized.
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FIGURE 4 – Left : ejection fractions versus cardiac cycle (used in clinical practice for measuring heart
failure) from [8], computed by a new FC-based solver (using a dynamic heart model) compared to those
computed by commonly-used finite differences (FD). Right : pressure at the midpoint of the right com-
mon carotid artery simulated by a 77-segment circulatory system model [9].

4 Conclusions

This contribution presents an overview of recent developments in Fourier continuation-based numeri-
cal PDE methods motivated by treatment of (linear) elastodynamics equations, (nonlinear) shallow water
wave equations and (nonlinear) fluid-structure hemodynamics equations with realistic sources and boun-
dary conditions. Such solvers have enabled scientific computing applications that have provided mutual
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validation of both simulation and data (natural or experimental) for problems in materials characteriza-
tion, geophysics and cardiovascular medicine. Current ongoing efforts include stronger coupling with
other models/methods (where challenges include the numerical representation of interfaces and efficient
information transfer) ; the development of FC-adapted automated structured grid generation algorithms
(e.g., those based on solutions of elliptic PDEs) ; the development of absorbing boundary conditions
(where a preliminary formulation, based on the overset grid methodology, has been introduced in [4] but
not yet fully explored) ; hybrid implicit-explicit time discretizations ; and GPU implementations of the
FC procedure (whose FFT-based calculations are ideally suited for such architectures).

Références

[1] A. Aghilinejad, F. Amlani, K.S. King, N.M. Pahlevan. Dynamic effects of aortic arch stiffening on pulsatile
energy transmission to cerebral vasculature as a determinant of brain-heart coupling, Scientific Reports, 10,
8784, 2020.

[2] N. Albin, O.P. Bruno. A spectral FC solver for the compressible Navier-Stokes equations in general domains
1 : Explicit time-stepping, Journal of Computational Physics, 230(16), 6248–6270, 2011.

[3] N. Albin, O.P. Bruno, T.Y. Cheung, R.O. Cleveland. Fourier continuation methods for high-fidelity simulation
of nonlinear acoustic beams, The Journal of the Acoustical Society of America, 132(4), 2371–2387, 2012.

[4] F. Amlani. A new high-order Fourier continuation-based elasticity solver for complex three-dimensional geo-
metries, PhD thesis, California Institute of Technology, 2014.

[5] F. Amlani, H.S. Bhat, W.J.F. Simons, A. Schubnel, C. Vigny, A.J. Rosakis, J. Efendi, A. Elbanna, H.Z. Abidin.
Supershear shock front contributions to the tsunami from the 2018 Mw 7.5 Palu earthquake, submitted (arXiv
preprint arxiv :1910.14547), 2021.

[6] F. Amlani, O.P. Bruno. An FC-based spectral solver for elastodynamic problems in general three-dimensional
domains, Journal of Computational Physics, 307, 333–354, 2016.

[7] F. Amlani, O.P. Bruno, J.C. López-Vázquez, C. Trillo, Á.F. Doval, JL Fernández, P Rodríguez-Gómez. Tran-
sient propagation and scattering of quasi-Rayleigh waves in plates : quantitative comparison between pulsed
TV-holography measurements and FC(Gram) elastodynamic simulations, arXiv preprint, arXiv :1905.05289,
2019.

[8] F. Amlani, N.M. Pahlevan. A stable high-order FC-based methodology for hemodynamic wave propagation,
Journal of Computational Physics, 405, 109130, 2020.

[9] F. Amlani, N.M. Pahlevan. A novel Fourier-based (pseudo) spectral framework for 1D hemodynamics and
wave propagation in the entire human circulatory system, Bulletin of the American Physical Society, 2021.

[10] F. Amlani, H. Wei, N.M. Pahlevan. A new psuedo-spectral methodology without numerical diffusion for
conducting dye simulations and particle residence time calculations, submitted, 2021.

[11] E. Boileau, P. Nithiarasu, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik, W.P. Donders, W. Huberts,
M. Willemet, J. Alastruey. A benchmark study of numerical schemes for one-dimensional arterial blood flow
modelling, International Journal for Numerical Methods in Biomedical Engineering, 31(10), p.e02732, 2015.

[12] J.P. Boyd, J.R. Ong. Exponentially-convergent strategies for defeating the Runge phenomenon for the ap-
proximation of non-periodic functions, part I : single-interval schemes, Communications in Compututational
Physics, 5(2-4), 484–497, 2009.

[13] O.P. Bruno, M. Lyon. High-order unconditionally stable FC-AD solvers for general smooth domains 1. Basic
elements, Journal of Computational Physics, 229(6), 2009–2033, 2010.

[14] M. Fontana, O.P. Bruno, P.D. Mininni, and P. Dmitruk. Fourier continuation method for incompressible fluids
with boundaries, Computer Physics Communications, 256, 107482, 2020.

[15] E.L. Gaggioli, O.P. Bruno, D M. Mitnik. Light transport with the equation of radiative transfer : The Fourier
Continuation–Discrete Ordinates (FC–DOM) Method, Journal of Quanti- tative Spectroscopy and Radiative
Transfer, 236, 106589, 2019.

[16] J.C. López-Vázquez, L.D.B. Xosé, C. Trillo, Á.F Doval, J.L. Fernandez, F. Amlani, O.P. Bruno. Numerical
modeling and measurement by pulsed television holography of ultrasonic displacement maps in plates with
through-thickness defects, Optical Engineering, 49(9), 095802, 2010.

[17] N.M. Pahlevan, F. Amlani, K.S. King, A. Aghilinejad. The Effects of Left Ventricle Contractility on Aortic-
Brain Hemodynamic Coupling, Bulletin of the American Physical Society, 2021.

[18] K. Shahbazi, J.S. Hesthaven, and X. Zhu. Multi-dimensional hybrid Fourier continuation-WENO solvers for
conservation laws, Journal of Computational Physics, 253, 209–225, 2013.

8


