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Résumé — A full-field numerical framework using the level-set method has been developed to simulate
diffusive solid-solid phase transformation at the mesoscopic scale in the context of austenite decomposi-
tion. A pseudo-1D test case with a planar interface is considered as a first case to demonstrate coherency
in the results in terms of the expected steady states achieved. The ability of the numerical framework to
model other diffusive solid state phenomena such as Ostwald ripening is successfully illustrated with a
suitable test case.
Keywords — Full-field method, level-set, diffusive phase transformation.

1 Introduction

All strategic industries (aeronautics, nuclear, automotive, oil & gas, defense and renewable energies)
make extensive use of metallurgical products. Under the pressure of intense international competition,
there is an increasing demand from these industries to have more physically realistic models at their dis-
posal to precisely predict the microstructural evolutions during thermomechanical treatments (TMTs) or
thermal treatments (TTs), which in turn determine the in-service material performances. Thanks to the
explosion of computer capacities, mesoscopic modeling techniques for metallic materials at the solid-
state are now available. These lower scale approaches, the so-called full-field models, are based on a
full description of the microstructure topology and have demonstrated an exciting potential for an exten-
sive range of microstructure evolutions like the precise modeling of recrystallization (ReX) in dynamic
(DRX) or post-dynamic (PDRX) conditions, grain growth (GG), diffusive solid-solid phase transforma-
tion (DSSPT), spheroidization and sintering. The main numerical frameworks involved are Monte Carlo
Potts (MC) [1], Cellular Automata (CA) [2], Phase Field (PF) or MultiPhase Field (MPF) [3, 4], Front-
Tracking [5, 6]/Vertex [7], and Level-Set (LS) models [8, 9]. These numerical methods are currently
used and developed by many researchers [11] and regularly compared for particular metallurgical me-
chanisms. However, a global mesoscopic numerical approach allowing to model all these mechanisms in
a unified framework remains to be developed. One of the objectives of this work is to implement such a
unified framework.

In the context of full field numerical modeling of diffusive solid-solid phase transformation (SSPT),
phase field (PF) [12, 13, 14, 15] methods are very popular and largely used. The diffuse interface des-
cription in PF methods naturally smoothens any material discontinuities across the interface. This is
especially desirable in the resolution of a diffusion equation as there is no explicit consideration of
interface jump conditions due to the discontinuities, and a single equation is resolved in the whole do-
main. However the presence of numerical parameters linked to the phase-field thickness can also bring
difficulties in PF simulations, especially when the considered interfaces present largely anisotropic cha-
racteristics. On the other hand, LS have been extensively used for simulating ReX and GG mechanisms.
LS approaches, unlike PF methods, do not introduce any artificial thickness of the interface and is based
on a kinetic description of the interface network migration, i.e. do not deal directly with the minimization
of the energy of the considered system. This kinetic description provides an easy and a natural way to
model concomitant mechanisms and take into account the influence of both grain and phase interfaces
seamlessly.
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So, the central idea of this work is to develop a LS numerical framework to model diffusive SSPT,
illustrated here in the context of austenite decomposition (austenite to ferrite transformation) in steels. In
addition, a transition to diffuse interface description is adopted for the resolution of diffusion equation
to avoid explicit consideration of interface jump conditions. In other words, for interface description and
migration, a LS-based convective/diffusive framework is developed, while for the resolution of solute
diffusion equation, a PF like diffuse interface description is adopted.

1.1 Numerical formalism

Thanks to the phase field like diffusive description of the interface, the total solute diffusion flux (J )
can be expressed as a continuous field through a sum of fluxes of each phase (denoted γ for austenite and
α for ferrite) weighted by the PF order parameter (φ) :

J = φJα +(1−φ)Jγ, (1)

Likewise, the total carbon concentration field (C) can also be expressed as a continuous variable :

C = φCα +(1−φ)Cγ, (2)

A constant concentration ratio is imposed at the diffuse interface composing the mixture of two
phases. This condition ensures that the redistribution of the solute atoms between the two phases at the
interface respects a partitioning ratio (k) equal to that at the equilibrium :

k =
Cα

Cγ

=
Ceq

α

Ceq
γ

, (3)

where Ceq
α and Ceq

γ are the carbon equilibrium concentrations of α and γ phases at temperature T .

Following Fick’s laws of diffusion, the diffusion equation for carbon partitioning can be expressed
as :

∂C
∂t

=−∇ ·J =−∇ ·
[
φ(−DC

α∇Cα)+(1−φ)(−DC
γ ∇Cγ)

]
,

∂C
∂t

=∇ ·
[
φDC

α∇Cα +(1−φ)DC
γ ∇Cγ

]
, (4)

Invoking Eq. (2) and (3), a modified carbon diffusion equation [14, 16] is obtained :

∂C
∂t

=∇ ·
{

D∗(φ)

[
∇C− C(k−1)

1+φ(k−1)
∇φ

]}
, (5)

where D∗(φ) is called "mixed diffusivity" and is defined as,

D∗(φ) =
DC

γ +φ(kDC
α −DC

γ )

1+φ(k−1)
.

With further simplifications, the above diffusion equation (5) can be transformed into a Convective-
Diffusive-Reactive (CDR) form as follows :

∂C
∂t

=∇ · [D∗(φ)∇C−CA(φ)]

∂C
∂t

+(A−∇D∗) ·∇C−D∗
∆C+RC = 0, (6)

where,

A(φ) =
D∗(φ)(k−1)
1+φ(k−1)

∇φ.

Let ϕ ∈ H1
0 (Ω) be a test function, we obtain for the weak formulation of Eq. (6) :
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∫
Ω

∂C
∂t

ϕdΩ+
∫

Ω

(A−∇D∗) ·∇CϕdΩ−
∫

Ω

D∗
∆CϕdΩ+

∫
Ω

RCϕdΩ = 0. (7)

Applying divergence theorem and imposing Neumann boundary conditions on the boundaries of the
computational domain, ∇C ·n|∂Ω = 0 :∫

Ω

D∗
∆CϕdΩ =

∫
∂Ω

ϕD∗∇C ·ndS−
∫

Ω

∇(D∗
ϕ) ·∇CdΩ =−

∫
Ω

∇(D∗
ϕ) ·∇CdΩ.

Substituting the above term in Eq. (7), we get after simplification :∫
Ω

∂C
∂t

ϕdΩ+
∫

Ω

A ·∇CϕdΩ+
∫

Ω

D∗∇ϕ ·∇CdΩ+
∫

Ω

RCϕdΩ = 0. (8)

The above CDR equation was implemented in a P1 finite element (FE) framework [10]. It can be high-
lighted that compared to the strong formulation in Eq. (6), the gradient of the mixed diffusivity term
(∇D∗) vanishes in the weak formulation. In terms of numerical stability, this is of great interest conside-
ring the abrupt evolution of this term in the phase interface.

It has been shown that the phase field order parameter has a steady state solution [14] of the following
form :

φ =
1
2

tanh
(
−3ψ

η

)
+

1
2
, (9)

where ψ represents a signed Euclidean distance to the interface that we will consider as the LS of interest
in the following as illustrated in fig 1a. This hyper tangent relation is central to the transition between a
diffusive and a level-set description of the interface. So, following the resolution of the diffusion equation,
we go back to the LS description of the interface and the interface migration is then governed by the
resolution of a kinetic equation applied to the LS function with a prescribed velocity field (v) :{

∂ψ

∂t +v ·∇ψ = 0
ψ(x, t = 0) = ψ0(x)

(10)

At the mesoscopic scale, for solid state phenomena such as recrystallization (ReX) and SSPT, inter-
face kinetics, v, is classically defined through the following relation [17, 11] :

v = µFn, (11)

where µ is the mobility of the considered interface, F the global driving force accounting for the consi-
dered phenomena, and n is the outward unit normal vector to the considered interface.

Typically, the principal component of the driving force is the difference in the Gibbs free energy
between the different phases (∆G). In addition, the presence of grain and phase interfaces introduce
capillarity effects through the minimization of surface energy (well known as the Gibbs-Thomson effect).
The contribution of strain energy due to deformation (JEK) can also be incorporated in the same kinetic
framework. It should be highlighted that the ∆G component does not vanish only across phase interfaces
(boundary between two different phases). So, in order to accommodate various contributions coming
from different types of interfaces in the same framework, characteristic functions specific to the interface
(χγα, χγγ, and χαα) can be adopted. Thus, the generalized net driving force and the net kinetics could be
formulated as :

F = χγα

(
∆G−κσγα + JEKγα

)
+χγγ

(
−κσγγ + JEKγγ

)
+χαα (−κσαα + JEKαα) , (12)

v =χγαµγα

(
∆G−κσγα + JEKγα

)
n+χγγµγγ

(
−κσγγ + JEKγγ

)
n

+χααµαα (−κσαα + JEKαα)n,
(13)

where κ is the trace of curvature tensor of the interface and σ is the interfacial energy, accounting for the
Gibbs-Thomson effect.

Neglecting, at yet, the strain energy contribution for simplicity and prescribing the above velocity
field into Eq. 10 yields :
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∂ψ

∂t
+χγαµγα∆Gn ·∇ψ−

[
χγαµγασγγ +χγγµγγσγγ +χααµαασαα

]
κn ·∇ψ = 0 (14)

By verifying the metric property of a distance function, ∥∇ψ∥= 1 all along the simulation, we can
write :

n=− ∇ψ

∥∇ψ∥
=−∇ψ =⇒ κ =∇ ·n=−∆ψ.

We can then rewrite Eq.14 in a convective-diffusive form to be resolved for interface migration :

∂ψ

∂t
+χγαµγα∆Gn ·∇ψ−

[
χγαµγασγα +χγγµγγσγγ +χααµαασαα

]
∆ψ = 0. (15)

After the resolution of the above equation, a suitable re-initialization procedure [18] is adopted to
restore the metric property of the LS function at each time step.

Description of ∆G

In the above formalism, ∆G is described based on a local linearization of the phase diagram as seen
in the works of Mecozzi et al [14]. ∆G is basically assumed to be proportional to a small undercooling
(∆T = T eq −T ). With low undercooling assumptions, the variations of enthalpy (∆H), and the entropy
(∆S) with temperature could be negligible (∆Seq ≈ ∆S, ∆Heq ≈ ∆H). So the Gibbs free energy for phase
change is defined as :

∆G(T,C) = ∆S∆T.

Linearizing at a reference temperature (T R), and assuming only carbon element partitions, the ∆G
component is expressed as follows :

∆G(T,C) = ∆S
[
(T R −T )+0.5mR

γ

(
Cγ −CR

γ

)
+0.5mR

α

(
Cα −CR

α

)]
, (16)

where CR
α and CR

γ are the equilibrium carbon concentrations at T R of ferrite and austenite respectively.
mR

α and mR
γ are the slopes of the boundary lines of the α and γ phase respectively, linearized at T R. These

are deduced by thermodynamic evaluations using Thermo-Calc software [19]. With the help of eqs. (2)
and (3), the above description could be further expressed as a function of C for each configuration of
φ(x, t) :

∆G = ∆S
[

T R −T +0.5mR
γ

(
C

1+φ(k−1)
−CR

γ

)
+0.5mR

α

(
kC

1+φ(k−1)
−CR

α

)]
. (17)

Based on the same linearization, the equilibrium carbon concentrations of each phase can be estima-
ted as follows :

Ceq
i =CR

i +
T −T R

mR
i

, with i = {α,γ} (18)

Using the above equations (18), the equilibrium partitioning ratio (k) can be expressed at each tem-
perature T as :

k =
CR

α + T−T R

mR
α

CR
γ + T−T R

mR
γ

. (19)

2 Results and Analyses

As a first case, a pseudo-1D domain (slender 2D, fig. 1b) with a planar interface between one austenite
grain and one ferrite grain is considered for austenite decomposition. The following assumptions are
imposed :
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(a) (b)

FIGURE 1 – (a) The level set of interest (ψ on the left side) and the corresponding diffuse phase field
description (φ on the right side), and (b) the pseudo-1D test case with one grain of each phase : red -
ferrite, blue - austenite

— The transformation kinetics are assumed to be of mixed mode character with both interface and
diffusion controlled modes. So, the concentration at the interface doesn’t attain the equilibrium
concentration right away, and the diffusion in the bulk of the phase is not instantaneous.

— Para-equilibrium conditions are imposed. Thus the partitioning of substitutional solute elements
are neglected. Only carbon redistributes and contributes to the global driving pressure.

— The interface mobility is assumed to be homogeneous and isotropic.
— Cooling is assumed to be instantaneous, and the phase transformation takes place at isothermal

conditions.
A set of fictitious data carefully chosen has been adopted for this case :

— Initial conditions : The initial condition is assumed to be at T initial = 1120 K with the equilibrium
concentrations, Cinitial

α = 0.005 wt% and Cinitial
γ = 0.113 wt%. The interface position is imposed

to be at 2.5 µm from the left boundary and is expected to migrate to the right during austenite
decomposition. η is fixed to 0.3 µm.

— Reference data : The reference temperature for linearization of the phase diagram is assumed
to be T R = 1100 K with the equilibrium concentrations, CR

α = 0.01 wt% and CR
γ = 0.15 wt%.

Linearized slopes, mR
α = −10000 K/wt% and mR

γ = −200 K/wt%, and entropy change, ∆S =

4×10−13 J/(Kµm3).
— Simulating conditions : For simplicity, the simulation temperature is assumed to be the same

as the reference one, T = 1100 K. For the initial conditions assumed, this is equivalent to an
instantaneous cooling of 20 K. The simulation temperature is held isothermal throughout the
phase transformation. Since the simulation temperature is equal to the reference one, the expected
equilibrium concentrations at the steady state should be, Ceq

α = 0.01 wt% and Ceq
γ = 0.15 wt%.

— Arrhenius type law is used for temperature dependence of mobility and the diffusivities with
D0

α = 2.2× 108 µm2/s ; D0
γ = 1.5× 107 µm2/s ; µ0 = 2× 1017 µm4/(Js) ; Qα = 122.5 kJ/mol ;

Qγ = 142.1 kJ/mol ; and Qµ = 140 kJ/mol.
A static isotropic mesh of 2 nm is considered with a time step of 1 ms.
From the expected equilibrium concentrations, it is possible to analytically estimate the expected steady
position of the interface by applying mass conservation. For this pseudo-1D case, it is expected to be at
3.514 µm.

Fig. (2) shows the carbon profile evolution at selected time steps. It could be observed that, initially
peaks are developed close to the interface in the austenite side indicating the solute enrichment during the
transformation as the carbon atoms from the ferrite side diffuse into the austenite side. As steady state is
reached, plain profiles start to develop indicating equilibrium. At steady state, the simulated equilibrium
concentrations are found to be : Ceq, num

α = 0.0099 wt% and Ceq, num
γ = 0.1483 wt%, which are close to

the expected concentrations. On the other hand, Fig. (3) shows the interface kinetics where the interface
position can be observed to converge to a steady value of Γeq, num = 3.47 µm which is well within the
range of the expected position, while the interface velocity tends towards 0 indicating convergence.
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FIGURE 2 – Evolution of the carbon profiles from the initial to the steady state

(a) Interface evolution (b) Interface velocity evolution

FIGURE 3 – Evolution of interface kinetics

2.1 Other diffusive solid state phenomena : Ostwald Ripening

Using the same numerical framework, it is possible to simulate other diffusive solid state pheno-
mena that are governed by similar components of driving pressure and kinetics. One such phenomenon
is Ostwald ripening [20], in which larger second phase particles (SPPs) grow at the expense of smaller
particles in a parent matrix (fig. 4a) towards the latter stage of a phase separation. Due to the Gibbs Thom-
son effects, the local equilibrium at the interface around a particle is affected. A concentration gradient
is created between the multimodal SPPs due to the solute mass transport resulting from the capillarity
effects. Owing to this, the smaller particles dissolve at the expense of coarsening of the larger ones. Thus,
there is an increase in the mean particle size while a decrease in the total number of particles.

In order to simulate this phenomenon, a large square domain of size 1000 µm2 with 200 particles of
α phase randomly distributed in the parent γ phase has been considered. The radii of the particles have
been normally distributed within a range of 2.5−7.5 µm with a mean size of 5 µm. The following initial
conditions were assumed : Ci

α = 0.0005 wt%; Ci
γ = 0.12 wt%; T = T R = 1100 K ; CR

α = 0.045 wt%
and CR

γ = 0.2 wt%. Anisotropic adaptive remeshing has been employed for this case. In addition, the
diffuse interface thickness (η) and the remeshing parameters are also adapted to the mean particle size
as they evolve through an appropriate affine relationship with the mean particle radius. A fixed time
step of 1 ms has been considered. The particles have been represented by multi-level set functions using
the coloration/ re-coloration scheme proposed in [21] to avoid numerical coalescence while limiting the
number of level-set functions (a more costly strategy will consist of considering one LS function for
each α particle). In this context, in order to compute the phase field function for the diffuse interface
description, the hyper-tangent relationship now becomes :
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φ =
1
2

tanh

(
−3

max
i∈{1,...,NLS}

ψi

η

)
+

1
2
, (20)

where NLS is the total number of LS functions.
Fig. 4a shows the initial distribution of the matrix-precipitate system and the time evolution of the par-
ticles in a particular region. It can be observed that all the particles grow initially since ∆G ≫ σκ during
the initial stages. However as they tend towards local equilibrium for solute concentrations, curvature
effects play significant role as larger particles continue to grow while there is dissolution of smaller
particles, showing Ostwald ripening behavior. Fig. 4 further reiterates the monotonous decrease in the
number of particles and the monotonous increase in the mean particle size observed for the case with
Gibbs Thomson effects due to coarsening. While for the case without curvature effects, the mean particle
size converges to a fairly constant value and is lower compared to the other case.

(a) Time evolution of SPPs- Zoomed on a few particles

(b) Time evolution of number of particles (c) Time evolution of mean particle size

FIGURE 4 – Evolution of SPPs statistics with and without curvature effects

3 Conclusion and perspectives

A mixed diffuse interface - LS formalism was implemented in a finite element numerical framework
to simulate diffusive solid-solid phase transformation. A pseudo-1D test case was considered with a
fictitious data set to simulate isothermal phase transformation. The numerical model yielded coherent and
expected results in terms of the steady states achieved. It was also demonstrated that other diffusive solid
state phenomena such as Ostwald ripening can be easily simulated using the same numerical framework.
It was shown that due to coarsening of the larger particles in the matrix, the mean particle size increases
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in comparison to a case without curvature effects. As the particles evolve, adapting the diffuse interface
thickness and the re-meshing parameters seem to improve computational performance while ensuring
a smooth evolution of the interfaces. Thus, the numerical model seems to be promising and capable
of simulating diffusive solid state phenomena. As a part of future work, the main idea is to consider
multiphase polycrystals. The introduction of multiple junctions would then demand the need for special
attention for the description of driving forces and the LS resolution at the multiple junctions. Introduction
of cooling rate effects through continuous cooling curves will also be considered. Nucleation theories
would also be introduced into the framework.
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