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Abstract — We study the size effect introduced by the regularization length scale in phase-field 
fracture. To explain the observed mechanical phenomena, we compare the results to the coupled 
criterion. We show through simple examples that a correlation can be established between the 
regularization length, the stiffness, the toughness, and the material's strength. However, we emphasize 
that this correlation should be made based on a faulire surface rather than a single curve. 
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1. Introduction 

Fracture is one of the most feared failures in engineering. Therefore, design codes apply a 
significant safety factor to avoid it. Additionally, to the devastating consequences, the evolution of a 
crack is challenging to study in practice. Hence, predicting the initiation and propagation of a crack is 
of great importance for practicing engineers and scientists. 

The first approach predicting brittle failure was proposed by Griffith [1]. He introduced a new 
measure to describe fracture toughness based on the energy release rate upon crack propagation. This 
model allowed us to describe well-known size effects in fracture. Later Bažant [2] realized that the 
description of Griffith is only valid if the crack is sufficiently large compared to the analyzed 
structure. Since then, many theories have been proposed to reproduce this elementary size effect in 
materials. Many theories assume that there is a transition zone where the stress singularity is 
somewhat regularized. Many of them assume that this is due to plastic activity. 

In the early 2010s, Bourdin, Francfourt, and Marigo [3] proposed a variational approach, which 
diffuses the crack into the solid volume. This way, replacing the discrete crack representation with a 
continuous smeared one. This fundamental work gave rise to many papers where the originally 
proposed mathematical scheme was implemented and coupled with various physics. It was shown that 
this simple length scale parameter allowed the users to reproduce complex physical phenomena 
without adding other cumbersome criteria. Fig. 1 shows a few examples, what can be simulated using 
the phase-field method. 

 

Figure 1 – From left to right: Mode I+III fracture; crack coalescence (reproduced from [4]); penny shaped crack; 
Kalthoff-Winkler test in PMMA 
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In this paper, we will discuss one particular aspect: the size effect introduced by cracks. We 
analyze different cases, focusing on critical loading, crack topology, and initiation dynamics. 

2. Methods 

The phase-field approximation replaces the discrete crack surface with a diffused one by 
introducing the crack density function. Thus the energy dissipated by the crack while propagating can 
be expressed as: 

, (1) 

where is the theoretical crack surface, is the crack surface density, d is the damage phase-field, 
is the critical value of the energy release rate (a measure of toughness), and  is the regularization 

length scale. The damage variable d varies between 0 and 1. For undamaged solids its value is close to 
0, while if a crack is fully formed d = 1. 

By searching for the minimum of the following energy functional: 

, (2) 

the phase-field approach proposes a framework to solve fracture mechanics problems with variational 
approaches (e.g., the finite element method). In eq. (2)  is the degraded elastic strain energy 
and T(d) is a threshold function. More about the theory can be found in Ref. [4, 5]. 

3. Results 

Progressively, through benchmark examples, the similarities, the differences, and the correlation 
between tensile strength and length scale are highlighted. 

In the case of the simple extension (mode I) the energy release rate, the stress fields, and the crack 
path are all known analytically. Using the coupled criterion [6] the critical loading and the first 
unstable jump in the crack length can be determined. The critical loading as a function of the initial 
crack length is shown in Fig. 2. It can be seen that both phase-field and coupled criterion reproduces 
well the experimentally observed size-effect [2]. However, depending on the formulation the phase-
field results converge to a different tensile strength when no crack is present. 

The coupled criterion uses two parameters to describe the resistance of a structure: the critical 
energy release rate and the tensile strength. 
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Figure 2 – Critical loading as a function of the initial crack length with different methods 

 

These results allow us to establish the correlation between the length scale parameter used in 
phase-fields and the tensile strength in the coupled criterion. 

Two additional test were carried out to investigate this correlation. We studied the initiation angle 
in simple shear and the unstable-stable propagation dynamics with a tapered double cantilever beam 
(TDCB) specimen. The detailed analytic and numeric calculations can be found in Ref. [7]. All the 
correlations are summarized in Fig. 3. 

 

Figure 3 – Tensile strength as a function of length scale (lc) for different cases without the threshold energy 
function (reproduced from Ref. [7]) 

It can be clearly seen that the correlation between length scale and tensile strength can be well 
defined, however this correlation is not unique. Rather than a single curve it can be described using a 
failure surface. 

When the gradient term in eq. (1) is neglected, the differential equation is simplified and can be 
solved analytically. This is called the homogeneous solution of the phase-field fracture equation and 
can be expressed in the following for: 
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where  is the materials tensile strength, E is Young’s modulus,  is Poisson’s ratio, and the 
function  takes into account the effect of the stress state. 

This equation was plotted in Fig. 4. 

 

Figure 4 – Homogeneous phase-field solution for plane strain cases. Maximum tensile stress as a function of the 
principal stress state. 

4. Conclusion 

The paper presents a short overview of the correlation between the tensile strength and the 
regularization length scale used in phase-field calculations. We used the critical loading, crack 
topology, and the unstable initiation length to establish this correlation through a size effect present in 
most engineering materials. We found that the two quantities are related through a complex surface 
rather than a single curve. Now it is essential to develop an experimental way to quantify this 
regularization locally. 
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